【随机过程】 5 - 非平稳过程

非平稳过程

1. 问题引入

  所谓平稳过程就是某些统计特性不随时间改变。之前介绍了宽平稳随机过程,宽平稳随机过程一般是对一阶矩和二阶矩做出了规定。也就是宽平稳随机过程的均值是个常数,相关只与两个时间的差值有关,不随着时间的变化而变化。

Stationary ⇔ InvarianceWide-Sense:  E ( Z ( t ) ) = m E ( Z ( t ) Z ( s ) ) = R Z ( t − s ) \text{Stationary} \Leftrightarrow \text{Invariance} \text{Wide-Sense: } \\ E(Z(t)) = m \\ E(Z(t)Z(s)) = R_Z(t-s) StationaryInvarianceWide-Sense: E(Z(t))=mE(Z(t)Z(s))=RZ(ts)

  平稳性使得我们分析问题变得简单了起来。因为,有了宽平稳的条件之后,我们不仅可以从时域上,从相关层面去分析随机过程,更可以从频域上,在功率谱层面去分析随机过程。

  接下来,我们会研究非平稳随机过程。

Non-Stationary Process \text{Non-Stationary Process} Non-Stationary Process

  平稳的形式可能比较确定,非平稳必然意味着无穷多种的变化,因此,研究非平稳的时候必须指明形式,否则,没有办法具体问题具体分析。

  接下来,我们会介绍循环平稳过程和正交增量过程两种非平稳随机过程。循环平稳过程是相关函数具有一定周期性的一种非平稳随机过程,通讯上研究的很多问题都是循环平稳过程,并且循环平稳过程可以通过适当的变换成为宽平稳随机过程。正交增量过程是随机过程不重叠的增量具有正交性的一种随机过程。布朗运动是正交增量过程的一种典例。并且布朗运动通过某些变换,也可以变成宽平稳随机过程,布朗运动在金融问题中,有广泛的应用。

2. 循环平稳过程

2.1 循环平稳过程的定义

Cyclostationary \text{Cyclostationary} Cyclostationary

  循环平稳过程,又叫做周期平稳过程,是在宽平稳的基础上稍加修改得到得到的。因为平稳的时移特性是对任意T存在的,只要把这个时移特性改成对存在T成立即可。

Wide-Sense R Z ( t , s ) = R Z ( t + T , s + T ) ∀ T Cyclostationary R Z ( t , s ) = R Z ( t + T , s + T ) ∃ T ⇒ R Z ( t , s ) = R Z ( t + n T , s + n T ) Period \text{Wide-Sense} \\ R_Z(t,s) = R_Z(t+T,s+T) \quad \forall T \\ \text{Cyclostationary} \\ R_Z(t,s) = R_Z(t+T,s+T) \quad \exist T \\ \Rightarrow R_Z(t,s) = R_Z(t+nT,s+nT) \quad \text{Period} Wide-SenseRZ(t,s)=RZ(t+T,s+T)TCyclostationaryRZ(t,s)=RZ(t+T,s+T)TRZ(t,s)=RZ(t+nT,s+nT)Period

  循环平稳过程只在T的倍数点上具有时移不变性,因此,循环平稳过程的相关函数具有周期性,而不具有时移不变性。

2.2 循环平稳过程与宽平稳随机过程的关系

  由于循环平稳过程的相关函数与时间是有关的,因此循环平稳过程并不是一种平稳的随机过程。但是,由于循环平稳过程与宽平稳随机过程具有极高的相似性,我们能够找到二者之间的联系,把循环平稳过程变成宽平稳随机过程极进行处理呢?

  我们假设有循环平稳过程Z(t)的周期是T。并且有一个均匀分布U,在[0,T]区间上是均匀分布的。并且U与Z是独立的

Z ( t ) ⇒ Cyclo U ∼ U [ 0 , T ] Independent Z(t) \Rightarrow \text{Cyclo} \\ U \sim U[0,T] \quad \text{Independent} Z(t)CycloUU[0,T]Independent

  则我们可以用Z和U构建一个宽平稳随机过程

Y ( t ) = Z ( t + U ) Y(t) = Z(t+U) Y(t)=Z(t+U)

  我们来证明一下Y(t)是一个宽平稳随机过程

R Y ( t , s ) = E ( Y ( t ) Y ( s ) ) = E ( Z ( t + U ) Z ( s + U ) ) R_Y(t,s) = E(Y(t)Y(s)) = E(Z(t+U)Z(s+U)) RY(t,s)=E(Y(t)Y(s))=E(Z(t+U)Z(s+U))

  由于这个期望中具有两个随机变量,我们可以使用条件概率的方法,限制住其中一个的随机性,来求另外一个

R Y ( t , s ) = E U ( E Z ( Z ( t + U ) Z ( s + U ) ∣ U ) ) = E ( R Z ( t + U , s + U ) ) = ∫ 0 T R Z ( t + U , s + U ) 1 T d U R_Y(t,s) = E_U(E_Z(Z(t+U)Z(s+U)|U)) \\ = E(R_Z(t+U,s+U)) \\ = \int_{0}^T R_Z(t+U,s+U) \frac{1}{T} dU RY(t,s)=EU(EZ(Z(t+U)Z(s+U)U))=E(RZ(t+U,s+U))=0TRZ(t+U,s+U)T1dU

  因为我们希望找到期望是否只依赖于时间差,所以,我们可以对上面的积分进行换元处理

Let  U ′ = U + s Then  U = U ′ − s R Y ( t , s ) = 1 T ∫ 0 + s T + s R Z ( t − s + U ′ , U ′ ) d U ′ \text{Let } U' = U+s \\ \text{Then } U = U' - s \\ R_Y(t,s) = \frac{1}{T}\int_{0+s}^{T+s} R_Z(t-s +U',U') dU' Let U=U+sThen U=UsRY(t,s)=T10+sT+sRZ(ts+U,U)dU

  由于相关函数具有周期T,因此在一个周期内的积分与起点无关

R Y ( t , s ) = 1 T ∫ 0 T R Z ( t − s + U ′ , U ′ ) d U ′ R_Y(t,s) = \frac{1}{T}\int_{0}^{T} R_Z(t-s +U',U') dU' RY(t,s)=T10TRZ(ts+U,U)dU

  因此,我们就得到了一个只依赖于t-s的相关函数

  因此,可以证明,对循环周期过程加一个随机的时间扰动,可以变成宽平稳随机过程。

2.3 条件期望

  在刚才公式推导的过程中,用到了条件期望,这里简单介绍一下

Conditional Expectation \text{Conditional Expectation} Conditional Expectation

2.3.1 定义

  条件期望的数学定义式,就是把概率密度函数变成了条件概率密度进行求解

Z , Y E ( Z ∣ Y ) = ∫ − ∞ + ∞ Z f Z ∣ Y ( z ∣ y ) d z E ( Z ∣ Y )  is r.v. Z,Y \\ E(Z|Y) = \int_{-\infty}^{+\infty} Z f_{Z|Y} (z|y) dz \\ E(Z|Y) \text{ is r.v.} Z,YE(ZY)=+ZfZY(zy)dzE(ZY) is r.v.

  条件期望与普通期望的地方在于,条件期望是个随机变量。当我们要求解的式子中存在Z和Y两个随机变量的时候,我们往往会想采用逐个击破的办法进行求解。就是先抑制住Y的随机性,求解Z,然后把Z算完了之后,再暴露出Y的随机性。

2.3.2 条件期望的性质

( 1 ) E ( Z ∣ Y )  is r.v. (1) \quad E(Z|Y) \text{ is r.v.} (1)E(ZY) is r.v.
  条件期望是随机变量

( 2 ) E ( Z g ( Y ) ∣ Y ) = g ( Y ) E ( Z ∣ Y ) (2) \quad E(Zg(Y)|Y) = g(Y) E(Z|Y) (2)E(Zg(Y)Y)=g(Y)E(ZY)

  这个性质成立的原因在于,里面的函数g的随机性被抑制住了,在这个期望里面,Y没有随机性。没有随机性的东西,就可以放到期望外面进行求解。

( 3 ) E ( g ( Z , Y ) ) = E Y ( E Z ( g ( Z , Y ) ∣ Y ) ) (3) \quad E(g(Z,Y)) = E_Y(E_Z(g(Z,Y)|Y)) (3)E(g(Z,Y))=EY(EZ(g(Z,Y)Y))

2.3.3 条件期望的应用

  这里对条件期望进行举例

  我们假设有n个独立同分布的随机变量Z,则n个随机变量的均值可以表示为

E ( Z 1 + . . . + Z n ) = E ( Z 1 ) + . . . + E ( Z n ) = n E ( Z 1 ) E(Z_1 +...+Z_n) = E(Z_1) + ... +E(Z_n) = nE(Z_1) E(Z1+...+Zn)=E(Z1)+...+E(Zn)=nE(Z1)

  现在,如果要求随机个独立同部分的随机变量Z的均值呢?

N  is r.v. E ( Z 1 + . . . + Z N ) N \text{ is r.v.} \\ E(Z_1 +...+Z_N) N is r.v.E(Z1+...+ZN)

  这个时候就可以使用条件概率了,我们先抑制住N的随机性求均值,然后再来解决N的问题

E ( Z 1 + . . . + Z N ) = E N ( E Z ( Z 1 + . . . + Z N ∣ N ) ) = E N ( N E ( Z 1 ) ) = E ( N ) E ( Z 1 ) E(Z_1 +...+Z_N) = E_N(E_Z(Z_1+...+Z_N |N)) = E_N(NE(Z_1)) = E(N)E(Z_1) E(Z1+...+ZN)=EN(EZ(Z1+...+ZNN))=EN(NE(Z1))=E(N)E(Z1)

2.4 循环平稳过程的应用–PAM

2.4.1 PAM概述

  举一个循环平稳随机过程的例子

PAM pulse amplititude modulation  ⇒ Communication \text{PAM pulse amplititude modulation }\Rightarrow \text{Communication} PAM pulse amplititude modulation Communication

  脉冲幅度调制。这是一种用于通讯中的调整信号

Z ( t ) = ∑ k = − ∞ + ∞ α k ϕ ( t − k T ) ϕ : Baseband Waveform T : Symbol Width α k : Information Bits E ( α k α m ) = R α ( k − m ) Z(t) = \sum_{k = -\infty}^{+\infty} \alpha_k \phi(t-kT) \\ \phi: \text{Baseband Waveform} \\ T: \text{Symbol Width} \\ \alpha_k:\text{Information Bits} \\ E(\alpha_k \alpha_m) = R_\alpha(k-m) Z(t)=k=+αkϕ(tkT)ϕ:Baseband WaveformT:Symbol Widthαk:Information BitsE(αkαm)=Rα(km)

  其中φ被称为基带波形,是用来做信号调制的载波的

  T叫做符号宽度。每一种符号代表一种信息

  α是信息位,携带比特流信息。我们假设α是宽平稳的

  PAM有很多种,比如BPSK、QPSK、QAM

B P S K  二元移相键控 Q P S K  四元移相键控 Q A M  5G使用的一种信号调制技术 BPSK \text{ 二元移相键控} QPSK \text{ 四元移相键控} QAM \text{ 5G使用的一种信号调制技术} BPSK 二元移相键控QPSK 四元移相键控QAM 5G使用的一种信号调制技术

  这里画一下BPSK的波形

在这里插入图片描述

  BPSK就是把数字信息调制到了连续的信号中。我们不能使用方波传输信号,因为高频分分量太多了,不好传输。而且方波边沿跳变会有过度带,如果方波频率高了,密集了,没有办法1识别。

在这里插入图片描述

  因此,我们会设计到基带波形,避免码间串扰。

  我们可以发现BPSK的方法,是一种低阶的调制技术。因为每一个波形只能传达1bit的信息,并且这个信号中只有0和pi两个相位。

在这里插入图片描述

  如果我们希望更加充分的利用相位信号传递信息,我们可以增加相位。

Constellation \text{Constellation} Constellation

在这里插入图片描述

  比如我们分成四个相位,每个相位携带两个bit的信息,QPSK就是这么做的。只要我们不断的增加相位,就能够增加每次传递的信息长度。比如QAM一个信息位可以传递64bit的数据

在这里插入图片描述

  这种表示相位划分的图,在通讯中叫做星座图。就是把相位映射为符号位,然后再映射为比特流。

2.4.2 PAM的时域分析

  现在我们求一下PAM的相关函数。

R Z ( t , s ) = E ( ∑ k α k ϕ ( t − k T ) ∑ m α m ϕ ( s − m T ) ) = ∑ k ∑ m E ( α k α m ) ϕ ( t − k T ) ϕ ( s − m T ) = ∑ k ∑ m R α ( k − m ) ϕ ( t − k T ) ϕ ( s − m T ) R_Z(t,s) = E(\sum_k \alpha_k \phi(t-kT)\sum_m \alpha_m \phi(s-mT)) \\ = \sum_k \sum_m E(\alpha_k \alpha_m) \phi(t-kT) \phi (s- mT) \\ = \sum_k \sum_m R_\alpha(k-m) \phi(t-kT) \phi (s- mT) RZ(t,s)=E(kαkϕ(tkT)mαmϕ(smT))=kmE(αkαm)ϕ(tkT)ϕ(smT)=kmRα(km)ϕ(tkT)ϕ(smT)

  我们发现PAM的相关函数并不是依赖于s和t的差值的,因此确实不是一个宽平稳随机过程。但是这个相关函数确实是以T为周期的,因此PAM是个循环平稳过程。

  我们对PAM加一个随机相位,把PAM变成一个宽平稳随机过程来进行分析。事实上,在通讯中,加一个随机相位是非常正常的,因为我们不可能确定发信号的位置

R Y ( t , s ) = E ( Y ( t ) Y ( s ) ) = E ( Z ( t + U ) Z ( s + U ) ) = 1 T ∫ 0 T R Z ( t + U , s + U ) d U = 1 T ∫ 0 T ∑ k ∑ m R α ( k − m ) ϕ ( t − k T + U ) ϕ ( s − m T + U ) d U R_Y(t,s) = E(Y(t)Y(s)) = E(Z(t+U)Z(s+U)) \\ = \frac{1}{T} \int_{0}^{T} R_Z(t+U,s+U) dU \\ = \frac{1}{T} \int_{0}^{T}\sum_k \sum_m R_\alpha(k-m) \phi(t-kT+U) \phi (s- mT+U) dU RY(t,s)=E(Y(t)Y(s))=E(Z(t+U)Z(s+U))=T10TRZ(t+U,s+U)dU=T10TkmRα(km)ϕ(tkT+U)ϕ(smT+U)dU

  首先进行连续积分变量的换元

Let  U ′ = s + U R Y ( t , s ) = 1 T ∫ 0 T ∑ k ∑ m R α ( k − m ) ϕ ( t − s − k T + U ′ ) ϕ ( U ′ − m T ) d U ′ \text{Let } U' = s+U R_Y(t,s) = \frac{1}{T} \int_{0}^{T}\sum_k \sum_m R_\alpha(k-m) \phi(t-s-kT+U') \phi (U'- mT) dU' Let U=s+URY(t,s)=T10TkmRα(km)ϕ(tskT+U)ϕ(UmT)dU

  但是这个式子看起来还是不够简洁,下面我们进行离散的换元

  相比于积分换元,离散换元只需要做两件事情

  • 换元
  • 换求和区间

  这里面因为求和区间是无穷长度,因此不需要改变求和区间

Let  k ′ = k − m Let  ′ = m Then  R Y ( t , s ) = 1 T ∫ 0 T ∑ k ′ ∑ m ′ R α ( k ′ ) ϕ ( t − s − ( k ′ + m ′ ) T + U ′ ) ϕ ( U ′ − m ′ T ) d U ′ \text{Let } k' = k-m \\ \text{Let } ' = m \\ \text{Then } R_Y(t,s) = \frac{1}{T} \int_{0}^{T}\sum_{k'} \sum_{m'} R_\alpha(k') \phi(t-s-(k'+m')T+U') \phi (U'- m'T) dU' Let k=kmLet =mThen RY(t,s)=T10TkmRα(k)ϕ(ts(k+m)T+U)ϕ(UmT)dU

  接下来,我们先求积分,再求累加和

R Y ( t , s ) = 1 T ∑ k ′ ∑ m ′ R α ( k ′ ) ∫ 0 T ϕ ( t − s − ( k ′ + m ′ ) T + U ′ ) ϕ ( U ′ − m ′ T ) d U ′ R_Y(t,s) = \frac{1}{T} \sum_{k'} \sum_{m'} R_\alpha(k') \int_{0}^{T}\phi(t-s-(k'+m')T+U') \phi (U'- m'T) dU' RY(t,s)=T1kmRα(k)0Tϕ(ts(k+m)T+U)ϕ(UmT)dU

  继续进行换元

Let  U ′ ′ = U ′ − m ′ T Then  R Y ( t , s ) = 1 T ∑ k ′ ∑ m ′ R α ( k ′ ) ∫ − m ′ T − ( m ′ − 1 ) T ϕ ( t − s − k ′ T + U ′ ′ ) ϕ ( U ′ ′ ) d U ′ ′ \text{Let }U'' = U' - m'T \\ \text{Then } \\ R_Y(t,s) = \frac{1}{T} \sum_{k'} \sum_{m'} R_\alpha(k') \int_{-m'T}^{-(m'-1)T}\phi(t-s-k'T+U'') \phi (U'') dU'' Let U=UmTThen RY(t,s)=T1kmRα(k)mT(m1)Tϕ(tskT+U)ϕ(U)dU

  我们发现,m的累加和能够使得积分一段一段的拼接起来,成立无穷区间的积分

R Y ( t , s ) = 1 T ∑ k ′ R α ( k ′ ) ∫ − ∞ + ∞ ϕ ( t − s − k ′ T + U ′ ′ ) ϕ ( U ′ ′ ) d U ′ ′ R_Y(t,s) = \frac{1}{T} \sum_{k'} R_\alpha(k') \int_{-\infty}^{+\infty}\phi(t-s-k'T+U'') \phi (U'') dU'' RY(t,s)=T1kRα(k)+ϕ(tskT+U)ϕ(U)dU

Let  τ = t − s − k ′ T Then  R Y ( t , s ) = ∑ k ′ R α ( k ′ ) 1 T ∫ − ∞ + ∞ ϕ ( U ′ ′ + τ ) ϕ ( U ′ ′ ) d U ′ ′ \text{Let } \tau = t-s-k'T \\ \text{Then } \\ R_Y(t,s) = \sum_{k'} R_\alpha(k') \frac{1}{T} \int_{-\infty}^{+\infty}\phi(U''+\tau) \phi (U'') dU'' Let τ=tskTThen RY(t,s)=kRα(k)T1+ϕ(U+τ)ϕ(U)dU

  我们发现后面是一个连续时间的相关函数Rφ

Time Correlation R ϕ ( τ ) = ∫ − ∞ + ∞ ϕ ( U ′ ′ + τ ) ϕ ( U ′ ′ ) d U ′ ′ \text{Time Correlation} R_{\phi}(\tau) = \int_{-\infty}^{+\infty}\phi(U''+\tau) \phi (U'') dU'' Time CorrelationRϕ(τ)=+ϕ(U+τ)ϕ(U)dU

  则相关函数可以表示为

R Y ( t , s ) = ∑ k ′ R α ( k ′ ) 1 T R ϕ ( τ ) = 1 T ∑ k ′ R α ( k ′ ) R ϕ ( t − s − k ′ T ) = R Y ( t − s ) R_Y(t,s) = \sum_{k'} R_\alpha(k')\frac{1}{T} R_{\phi}(\tau) \\ = \frac{1}{T}\sum_{k'} R_\alpha(k') R_{\phi}(t-s-k'T ) \\ =R_Y(t-s) RY(t,s)=kRα(k)T1Rϕ(τ)=T1kRα(k)Rϕ(tskT)=RY(ts)

  最终我们得到了一个宽平稳随机过程的相关函数

2.4.3 PAM的频域分析

  我们得到了宽平稳随机过程之后,就可以利用得到的相关函数求功率谱了

Let  τ = t − s S Y ( ω ) = ∫ − ∞ + ∞ R Y ( τ ) e x p ( − j ω τ ) d τ = ∫ − ∞ + ∞ 1 T ∑ k ′ R α ( k ′ ) R ϕ ( τ − k ′ T ) e x p ( − j ω τ ) d τ \text{Let } \tau = t-s \\ S_Y(\omega) = \int_{-\infty}^{+\infty} R_Y(\tau) exp(-j\omega \tau) d\tau \\ = \int_{-\infty}^{+\infty} \frac{1}{T}\sum_{k'} R_\alpha(k') R_{\phi}(\tau -k'T ) exp(-j\omega \tau) d\tau Let τ=tsSY(ω)=+RY(τ)exp(jωτ)dτ=+T1kRα(k)Rϕ(τkT)exp(jωτ)dτ

  换元

Let  τ ′ = τ − k ′ T S Y ( ω ) = 1 T ∑ k ′ R α ( k ′ ) e x p ( − j k ′ T ω ) ∫ − ∞ + ∞ R ϕ ( τ ′ ) e x p ( − j ω τ ′ ) d τ \text{Let } \tau' = \tau - k'T \\ S_Y(\omega) = \frac{1}{T}\sum_{k'} R_\alpha(k')exp(-jk'T\omega) \int_{-\infty}^{+\infty} R_{\phi}(\tau' ) exp(-j\omega \tau') d\tau Let τ=τkTSY(ω)=T1kRα(k)exp(jkTω)+Rϕ(τ)exp(jωτ)dτ
  我们发现换元以后,前面得到一个离散傅里叶变换,后面得到一个连续的傅里叶变换

S Y ( ω ) = 1 T S α ( T ω ) S ϕ ( ω ) S_Y(\omega) = \frac{1}{T} S_{\alpha}(T \omega) S_{\phi}(\omega) SY(ω)=T1Sα(Tω)Sϕ(ω)

  我们发现PAM的功率谱就是一个离散版本的功率谱与一个连续版本功率谱的乘积。最终得到信号的功率谱,就是基带信号的功率谱乘以信息位信号的功率谱。

  因此,设计基带信号的时候,最好的让传递信号的谱刚好在基带信号的谱中。如果基带信号的功率谱很宽,传递信号的功率谱很窄,就会造成性能浪费。而如果基带信号的功率谱很窄,传递信号的功率谱很宽,就会造成信号失真。基带信号的功率谱应该比传递信号适当的宽一些。

  这个式子中,我们也可以把α看做是原始信号,基带信号看做是线性系统,让数字信号通过一个线性系统之后,得到了一个新的信号

S Y ( ω ) = 1 T S α ( T ω ) S ϕ ( ω ) = 1 T S α ( T ω ) ∣ H ( ω ) ∣ 2 S_Y(\omega) = \frac{1}{T} S_{\alpha}(T \omega) S_{\phi}(\omega) = \frac{1}{T} S_{\alpha}(T \omega) |H(\omega)|^2 SY(ω)=T1Sα(Tω)Sϕ(ω)=T1Sα(Tω)H(ω)2

  我们这样表示原始信号

Z ( t ) = ∑ k = − ∞ + ∞ α k δ ( t − k T ) Z(t) = \sum_{k = -\infty}^{+\infty} \alpha_k \delta(t-kT) Z(t)=k=+αkδ(tkT)

  原始信号通过线性系统得到PAM

Z ( t ) → ϕ → Z ( t ) ‾ Z(t)\rightarrow \boxed{\phi} \rightarrow \overline{Z(t)} \\ Z(t)ϕZ(t)

  时域响应
Z ( t ) ‾ = Z ( t ) ⊛ ϕ ( t ) = ∑ k = − ∞ + ∞ α k δ ( t − k T ) ⊛ ϕ ( t ) = ∑ k = − ∞ + ∞ α k ϕ ( t − k T ) \overline{Z(t)} = Z(t) \circledast \phi(t) \\ = \sum_{k = -\infty}^{+\infty} \alpha_k \delta(t-kT) \circledast \phi(t) \\ = \sum_{k = -\infty}^{+\infty} \alpha_k \phi(t-kT) Z(t)=Z(t)ϕ(t)=k=+αkδ(tkT)ϕ(t)=k=+αkϕ(tkT)

  循环增量过程在通讯中是非常常见的

3. 正交增量过程

3.1 定义

  我们接下来研究第二种非平稳随机过程–正交增量过程

Orthogonal Increment \text{Orthogonal Increment} Orthogonal Increment

  正交增量过程一般定义零点时值为0。在正交增量过程中,任取四个连续的点,不重叠的时间增量是正交的

Z ( 0 ) = 0 ∀ t 1 < t 2 ≤ t 3 < t 4 Z ( t 4 ) − Z ( t 3 ) ⊥ Z ( t 2 ) − Z ( t 1 ) Z(0) = 0 \\ \forall t_1 < t_2 \leq t_3 < t_4 \\ Z(t_4) - Z(t_3) \perp Z(t_2) - Z(t_1) Z(0)=0t1<t2t3<t4Z(t4)Z(t3)Z(t2)Z(t1)

  正交就是内积为0,随机变量的内积就是求相关,即

E ( Z ( t 4 ) − Z ( t 3 ) ) ( Z ( t 2 ) − Z ( t 1 ) ) = 0 E(Z(t_4) - Z(t_3))(Z(t_2) - Z(t_1)) = 0 E(Z(t4)Z(t3))(Z(t2)Z(t1))=0

3.2 时域分析

  下面我们求一下正交增量过程的相关函数,看看是否确实是不平稳的

R Z ( t , s ) = E ( Z ( t ) Z ( s ) ) = E ( ( Z ( t ) − Z ( s ) + Z ( s ) ) Z ( s ) ) = E ( ( Z ( t ) − Z ( s ) ) ( Z ( s ) − Z ( 0 ) ) + E ( Z 2 ( s ) ) = E ( Z 2 ( s ) ) R_Z(t,s) = E(Z(t)Z(s)) \\ = E((Z(t)-Z(s)+Z(s))Z(s)) \\ = E((Z(t)-Z(s))(Z(s)-Z(0)) + E(Z^2(s)) \\ = E(Z^2(s)) RZ(t,s)=E(Z(t)Z(s))=E((Z(t)Z(s)+Z(s))Z(s))=E((Z(t)Z(s))(Z(s)Z(0))+E(Z2(s))=E(Z2(s))

在这里插入图片描述

  因为我们对于正交增量过程,只有一个正交性的特性,我们要想使用上,就必须把随机过程拆开。我们发现正交增量过程的相关,得到的就是较小的那个点的自相关。因此,确实相关函数不是依赖于时间差的,不是平稳过程。

  我们就得到了相关函数

R Z ( t , s ) = E ( Z 2 ( s ) ) = g ( s ) = g ( m i n ( s , t ) ) R_Z(t,s) = E(Z^2(s)) = g(s) = g(min(s,t)) RZ(t,s)=E(Z2(s))=g(s)=g(min(s,t))

  这个结论是正交增量过程的特征式子。

  我们可以验证一下

E ( ( Z ( t 4 ) − Z ( t 3 ) ( Z ( t 2 ) − Z ( t 1 ) ) ) = R Z ( t 4 , t 1 ) + R Z ( t 3 , t 1 ) − R Z ( t 3 , t 2 ) − R Z ( t 4 , t 1 ) = g ( t 2 ) + g ( t 1 ) − g ( t 2 ) − g ( t 1 ) = 0 E((Z(t_4)-Z(t_3)(Z(t_2)-Z(t_1))) \\ = R_Z(t4,t1) +R_Z(t_3,t_1)- R_Z(t_3,t_2)-R_Z(t_4,t_1) \\ = g(t_2) +g(t_1) -g(t_2)-g(t_1) = 0 E((Z(t4)Z(t3)(Z(t2)Z(t1)))=RZ(t4,t1)+RZ(t3,t1)RZ(t3,t2)RZ(t4,t1)=g(t2)+g(t1)g(t2)g(t1)=0

  通过这个式子确实能够得到正交增量过程的特性

3.3 正交增量过程的应用–布朗运动

3.3.1 概述

  正交增量过程的典型应用就是布朗运动

  布朗运动的增量服从高斯分布

Brown Motion \text{Brown Motion} Brown Motion

( 1 ) B ( 0 ) = 0 ( 2 ) Orthorgonal Increment ( 3 ) B ( t ) − B ( s ) ∼ N ( 0 , σ 2 ( t − s ) ) (1) \quad B(0) = 0 \\ (2) \quad \text{Orthorgonal Increment} \\ (3) \quad B(t) - B(s) \sim N(0,\sigma^2(t-s)) (1)B(0)=0(2)Orthorgonal Increment(3)B(t)B(s)N(0,σ2(ts))

3.3.2 时域分析

  下面,我们来求一下布朗运动的相关函数

R B ( t , s ) = E ( B 2 ( s ) ) = σ 2 s = σ 2 m i n ( t , s ) R_B(t,s) = E(B^2(s)) = \sigma^2s = \sigma^2 min(t,s) RB(t,s)=E(B2(s))=σ2s=σ2min(t,s)

  接下来,我们求一下布朗运动的导数,并基于这个导数求相关

  事实上,布朗运动其实是处处连续,处处不可微的,这里求导数的操作涉及到背后的知识全部省略,但是公式一定是对的,我们只讲述本质的道理

Y ( t ) = d d t B ( t ) R Y ( t , s ) = E ( d d t B ( t ) d d s B ( s ) ) = ∂ 2 ∂ t ∂ s E ( B ( t ) B ( s ) ) = ∂ 2 ∂ t ∂ s R B ( t , s ) = σ 2 ∂ 2 ∂ t ∂ s m i n ( t , s ) = σ 2 ∂ 2 ∂ t ∂ s m i n ( t , s ) = σ 2 ∂ 2 ∂ t ∂ s ( 1 2 ( s + t − ∣ s − t ∣ ) ) Y(t) = \frac{d}{dt} B(t) \\ R_Y(t,s) = E(\frac{d}{dt} B(t) \frac{d}{ds} B(s)) \\ = \frac{\partial^2}{\partial t \partial s} E(B(t)B(s)) \\ = \frac{\partial^2}{\partial t \partial s} R_B(t,s) = \sigma^2 \frac{\partial^2}{\partial t \partial s} min(t,s) \\ = \sigma^2 \frac{\partial^2}{\partial t \partial s} min(t,s) \\ = \sigma^2 \frac{\partial^2}{\partial t \partial s} (\frac{1}{2}(s+t - |s-t|)) Y(t)=dtdB(t)RY(t,s)=E(dtdB(t)dsdB(s))=ts2E(B(t)B(s))=ts2RB(t,s)=σ2ts2min(t,s)=σ2ts2min(t,s)=σ2ts2(21(s+tst))

  我们要对绝对值求导。从广义函数理论来说,绝对值求导得到的就是符号函数。虽然,零点不可导,但是我们不关心了。

Generalized Functions ⇒ L. Schwartz \text{Generalized Functions} \Rightarrow \text{L. Schwartz} Generalized FunctionsL. Schwartz

d ∣ x ∣ d x = s g n ( x ) \frac{d|x|}{dx} = sgn(x) dxdx=sgn(x)

  有了绝对值求导之后,继续做

Y ( t ) = σ 2 ∂ 2 ∂ t ∂ s ( 1 2 ( s + t − ∣ t − s ∣ ) ) = σ 2 2 ∂ ∂ t s g n ( t − s ) Y(t) = \sigma^2 \frac{\partial^2}{\partial t \partial s} (\frac{1}{2}(s+t - |t-s|)) \\ = \frac{\sigma^2}{2} \frac{\partial}{\partial t } sgn(t-s) Y(t)=σ2ts2(21(s+tts))=2σ2tsgn(ts)

  符号函数继续求导,得到的是两倍的冲激信号

  我们知道阶跃函数求导得到的是冲激信号,而符号函数就是两个阶跃信号的差

d d x U ( x ) = δ ( x ) U ( x ) = { 1 x  ≥ 0 0 x  < 0 d s g n ( x ) = U ( x ) − U ( − x ) d d x s g n ( x ) = 2 δ ( x ) \frac{d}{dx} U(x) = \delta(x) \\ U(x) = \begin{cases} 1 &\text{x } \geq 0 \\ 0 &\text{x } < 0 d \end{cases} \\ sgn(x) = U(x) - U(-x) \\ \frac{d}{dx} sgn(x) = 2\delta(x) dxdU(x)=δ(x)U(x)={100<0dsgn(x)=U(x)U(x)dxdsgn(x)=2δ(x)

  继续求相关函数
Y ( t ) = σ 2 2 ∂ ∂ t s g n ( t − s ) = σ 2 δ ( t − s ) Y(t) = \frac{\sigma^2}{2} \frac{\partial}{\partial t } sgn(t-s) \\ = \sigma^2 \delta(t-s) Y(t)=2σ2tsgn(ts)=σ2δ(ts)

  我们发现,布朗运动求导之后得到的随机过程的相关函数,就是白噪声。所谓白噪声,就是每个频点处都有能量,并且每个频点处能量都是相等的

  我们也发现,刚才通过求导,为我们把非平稳的过程变成了一个宽平稳的过程。

3.3.3 平稳分量与非平稳分量

在这里插入图片描述

  这里我们考察另外一个问题。对于一个时间序列,平稳性体现在什么地方?是大的变化趋势,还是上面的毛刺部分呢?

  事实上,毛刺部分代表的是平稳分量。因为趋势一直在变,一定是非平稳的,而毛刺可以在统计上找到不变的特性。

Tend ⇒ Non-Stationary \text{Tend} \Rightarrow \text {Non-Stationary} TendNon-Stationary

  这里也要明确一点,求导是高通滤波,放过的是高频分量,得到的是边缘信息。而积分是低通滤波,得到的是低频分量,也就是轮廓信息。

  因此,一个时间序列经过高通处理之后,可以变成是平稳的。

3.3.4 伊藤公式与随机微分方程
(1) 随机过程的导数与伊藤公式

  下面我们研究一个函数,依赖于时间和布朗运动两个参数

f ( t , B ( t ) ) f(t,B(t)) f(t,B(t))

  如果我们想求这个函数的微分,怎么求?

  如果我们直接按照确定性方程的求导方法,会得到什么呢?
d f ( t , B ( t ) ) = ∂ f ∂ t d t + ∂ f ∂ B d B ( t ) df(t,B(t)) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial B} dB(t) df(t,B(t))=tfdt+BfdB(t)

  看似是对的,其实不然,我们可以分析一下

  表示一下布朗运动的导数

B ( t ) ∼ N ( 0 , σ 2 t ) d B ( t ) = B ( t + d t ) − B ( t ) ∼ N ( 0 , σ 2 d t ) B(t) \sim N(0,\sigma^2 t) \\ dB(t) = B(t +dt) -B(t) \sim N(0,\sigma^2 dt) B(t)N(0,σ2t)dB(t)=B(t+dt)B(t)N(0,σ2dt)

  根据高斯分布的性质,可以得到

E ( d B ( t ) ) 2 = σ 2 d t E(dB(t) )^2 = \sigma^2 dt E(dB(t))2=σ2dt

  因此,我们可以发现,布朗运动微分的平方与t的微分是同阶的,也就是布朗运动得到微分是半阶dt

( d B ( t ) ) 2 ∼ d t ⇒ d B ( t ) ∼ d t (dB(t))^2 \sim dt \\ \Rightarrow dB(t) \sim \sqrt{dt} (dB(t))2dtdB(t)dt

  这样的话,我们再看我们的微分,就感觉不对了。首先看微分的定义,微分是求函数自变量和因变量之间的变化率。我们希望用简单的线性变化去描述局部的关系。因此,微分得到的结果应该是df和dt之间的一种一阶微分关系,这里得到的df与dB的导数,并没有得到df与dt的一阶关系,因此,我们这个求导用的泰勒展开,还需要再来一阶才行。
d f ( t , B ( t ) ) = ∂ f ∂ t d t + ∂ f ∂ B d B ( t ) x df(t,B(t)) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial B} dB(t) \quad \text{x} df(t,B(t))=tfdt+BfdB(t)x
d f ( t , B ( t ) ) = ∂ f ∂ t d t + ∂ f ∂ B d B ( t ) + 1 2 ∂ 2 f ∂ B 2 ( d B ( t ) ) 2 v df(t,B(t)) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial B} dB(t) +\frac{1}{2} \frac{\partial^2f}{\partial B^2}(dB(t))^2 \quad \text{v} df(t,B(t))=tfdt+BfdB(t)+21B22f(dB(t))2v

  得到的这个结果就叫做伊藤公式

Ito Formula d f ( t , B ( t ) ) = ∂ f ∂ t d t + ∂ f ∂ B d B ( t ) + 1 2 ∂ 2 f ∂ B 2 ( d B ( t ) ) 2 \text{Ito Formula} \\ df(t,B(t)) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial B} dB(t) +\frac{1}{2} \frac{\partial^2f}{\partial B^2}(dB(t))^2 Ito Formuladf(t,B(t))=tfdt+BfdB(t)+21B22f(dB(t))2

  伊藤公式告诉我们,对随机过程求微分,我们需要考虑更多的东西,因为这和确定性的微分并不是一样的。

(2) 随机微分方程

  我们可以再来看看积分的事情

∫ 0 1 B ( t ) d B ( t ) = 1 2 d B 2 ( t ) x \int_0^1 B(t) dB(t) = \frac{1}{2} d B^2(t) \quad \text{x} 01B(t)dB(t)=21dB2(t)x

  这个式子怎么求积分呢?显然,直接把B(t)提出来并且把0和1代入是肯定不对的

  我们用伊藤公式进行展开,来计算B(t)dB(t)应该如何表述

1 2 d B 2 ( t ) = B ( t ) d B ( t ) + 1 2 d t \frac{1}{2} d B^2(t) = B(t)dB(t) + \frac{1}{2} dt 21dB2(t)=B(t)dB(t)+21dt

B ( t ) d B ( t ) = 1 2 d B 2 ( t ) − 1 2 d t B(t)dB(t) = \frac{1}{2} d B^2(t) - \frac{1}{2} dt B(t)dB(t)=21dB2(t)21dt

  所以,我们的积分可以表示为

∫ 0 1 B ( t ) d B ( t ) = ∫ 0 1 1 2 d B 2 ( t ) − 1 2 d t = ( 1 2 B 2 ( t ) − 1 2 t ) ∣ 0 1 \int_0^1 B(t) dB(t) = \int_0^1\frac{1}{2} d B^2(t) - \frac{1}{2} dt \\ = (\frac{1}{2}B^2(t) - \frac{1}{2}t)|_0^1 01B(t)dB(t)=0121dB2(t)21dt=(21B2(t)21t)01

  这就是随机微分方程,随机微分方程的主要工作是由伊藤清做的

Stochastic Calculus \text{Stochastic Calculus} Stochastic Calculus

3.3.5 期权定价问题

Option Pricing \text{Option Pricing} Option Pricing

  期权定价问题是布朗运动和伊藤公式的典型应用,下面进行简要介绍。

(1) 布朗运动与金融建模

  由于布朗运动具有不可预测性,经常被用来对股票价格进行建模,这个工作是1900年由bacheliar做的。其导师是庞加莱

B ( t ) Brown Motion →  Stock Price Modeling(Bacheliar) B(t) \quad \text{Brown Motion} \rightarrow \text{ Stock Price Modeling(Bacheliar)} B(t)Brown Motion Stock Price Modeling(Bacheliar)

  但是这个事情被人诟病,因为布朗运动有时候是负的,但是股票价格不可能是负的,因此,人们提出了新的随机过程来进行描述,把布朗运动1放到了指数里面,并做了进一步的改进

S ( t ) = e x p ( B ( t ) ) → e x p ( u t + B ( t ) ) S(t) = exp(B(t)) \rightarrow exp(ut +B(t)) S(t)=exp(B(t))exp(ut+B(t))

  这个模型包括两部分,一部分是短时的变化趋势,另外一部分是布朗运动带来的价格波动。这个模型被叫做几何布朗运动,是金融学奠基人萨缪尔森做出的工作

Geometric Brown Motion → Samuelson \text{Geometric Brown Motion} \rightarrow \text{Samuelson} Geometric Brown MotionSamuelson

(2) 期权与对冲问题

  然后我们介绍一下,什么是期权。

  我们直接买卖股票的风险是非常高的,因为我们没有办法控制股票的涨落。

  如果我们去买一个期权,就不一样了。期权是买卖股票的权利,在一个固定时间去买卖股票的权利。买卖股票有两种形式,一种是股价5块钱,然后花了五块钱去买了股票。另一种是,别人手里有5块钱的股票,我们不直接买股票,而是买他股票的权利。我们决定明天买他的股票,因为股票明可能会涨。我们约定明天用5.2来买这个股票。然后我们花1毛钱来买这个权利,就是明天花5.2来买这个股票的权利。现在,对于卖者来说,今天已经赚了1毛钱,如果明天股票跌了,还是能以5.2卖出。但是如果明天股票涨了,可能就会亏一点。对于买者来说,也还好,如果明天股票涨价到了8块,我们可以使用购买的权利,用5.2来买股票。但是如果明天股票跌了,我们可以放弃期权,因为买方有权决定是否要这个期权。因此,买家顶多就损失1毛钱。

  因此,期权是一个依赖于购买时间和股票价格的二元函数,时间越久,期权会越贵,股票价格越高,期权会越贵。

V ( t , S ( t ) ) V(t,S(t)) V(t,S(t))

  因此,期权是一个很好的规避风险的工具,能够帮助抗拒风险。我们可以进一步降低风险,就是进行资产组合。做资产组合是能够做对冲的。
H e d g i n g Hedging Hedging

  接着上面的例子。我们要买期权,要付那1毛钱,这一毛钱哪里来? 这个钱应该通过卖掉手里的股票来付。如果没有的话,借股票来卖,这是一种对冲。对冲的意思就是要把风险降下来。就是不管股票涨还是跌,我们的损失都不会很大。

  卖股票买期权就能够达到这个目的。如果股票涨了,这个时候卖股票就吃亏了,但是买期权的地方就会赚。如果股票跌了,买期权就亏了,可是我们就实现了股票高点的套现。

  金融里面,最重要的不是赚钱,而是活下去,不出局。因此金融的设计理念就是规避风险。因此,我们要做资产组合,资产应该包括期权和卖掉的股票,其中st是股票,因为卖掉是负资产。得到的就是总资产。

P ( t ) = V ( t , S ( t ) ) − α S ( t ) P(t) = V(t,S(t)) - \alpha S(t) P(t)=V(t,S(t))αS(t)

(3) 期权定价

  然后,我们就可以来研究,期权价格到底要定多少,可以规避风险。有一个基本原理,总资产的微分应该等于等额的资产存到银行里面获得的收益。r是银行利率。如果金融玩不过银行利率,就别玩金融了

P ( t ) = V ( t , S ( t ) ) − α S ( t ) d P ( t ) = r P ( t ) d t r  : Interest Rate P(t) = V(t,S(t)) - \alpha S(t) \\ dP(t) = rP(t)dt \quad r \text{ : Interest Rate} P(t)=V(t,S(t))αS(t)dP(t)=rP(t)dtr : Interest Rate

  然后我们来求解

  表示一下股票价格的微分
d S ( t ) = d e x p ( u t + B ( t ) ) = S ( t ) u d t + S ( t ) d B ( t ) + 1 2 S ( t ) d t dS(t) = d exp(ut +B(t)) \\ = S(t) u dt +S(t) dB(t) +\frac{1}{2} S(t)dt dS(t)=dexp(ut+B(t))=S(t)udt+S(t)dB(t)+21S(t)dt

  表示一下总资产的微分

d P ( t ) = d V ( t , S ) − α d S = ∂ V ∂ t d t + ∂ V ∂ S d S + 1 2 ∂ 2 V ∂ S 2 d S 2 − α d S dP(t) = dV(t,S) - \alpha dS \\ = \frac{\partial V}{\partial t} dt +\frac{\partial V}{\partial S} dS + \frac{1}{2}\frac{\partial ^2V}{\partial S^2} dS^2 - \alpha dS dP(t)=dV(t,S)αdS=tVdt+SVdS+21S22VdS2αdS

  我们对dS进行平方,所有dt的高阶项都不要了,但是会留下其中一项

( d S ( t ) ) 2 = ( S ( t ) u d t + S ( t ) d B ( t ) + 1 2 S ( t ) d t ) 2 = ( S ( t ) d B ( t ) ) 2 = S 2 ( t ) d t (dS(t))^2 = (S(t) u dt +S(t) dB(t) +\frac{1}{2} S(t)dt)^2 \\ = (S(t) dB(t))^2 = S^2(t) dt (dS(t))2=(S(t)udt+S(t)dB(t)+21S(t)dt)2=(S(t)dB(t))2=S2(t)dt

  代入

d P ( t ) = ∂ V ∂ t d t + ∂ V ∂ S d S + 1 2 ∂ 2 V ∂ S 2 S 2 ( t ) d t − α d S dP(t) =\frac{\partial V}{\partial t} dt +\frac{\partial V}{\partial S} dS + \frac{1}{2}\frac{\partial ^2V}{\partial S^2} S^2(t) dt - \alpha dS dP(t)=tVdt+SVdS+21S22VS2(t)dtαdS

  由于dS是随机项,必须消掉,可以求得α

α = ∂ V ∂ S \alpha = \frac{\partial V}{\partial S} α=SV

  α的取法,就是对冲策略,相当于我卖多少股票,来买一份期权。这是一种最简单的对冲策略。

  然后我们就得到了期权价格变动的公式。这个公式叫做

Black Scholes \text{Black Scholes} Black Scholes

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值