Python OpenCV -- 霍夫线变换(十二)

霍夫线变换

  1. 霍夫线变换是一种用来寻找直线的方法.

  2. 是用霍夫线变换之前, 首先要对图像进行边缘检测的处理,也即霍夫线变换的直接输入只能是边缘二值图像.


实现:

  1.  一条直线在图像二维空间可由两个变量表示. 例如:
       a.  在 笛卡尔坐标系: 可由参数: (m,b) 斜率和截距表示.
       b.  在 极坐标系: 可由参数: (r,\theta) 极径和极角表示

                                                                       

             对于霍夫变换, 我们将用 极坐标系 来表示直线. 因此, 直线的表达式可为:

                                                                       

             化简得: r = x \cos \theta + y \sin \theta

 2.  一般来说对于点 (x_{0}, y_{0}), 我们可以将通过这个点的一族直线统一定义为:

                                          r_{\theta} = x_{0} \cdot \cos \theta  + y_{0} \cdot \sin \theta

    这就意味着每一对 (r_{\theta},\theta) 代表一条通过点 (x_{0}, y_{0}) 的直线.

3.    如果对于一个给定点 (x_{0}, y_{0}) 我们在极坐标对极径极角平面绘出所有通过它的直线, 将得到一条正弦曲线. 例如, 对于给定点 x_{0} = 8 and y_{0} = 6 我们可以绘出下图 (在平面 \theta - r):

                                                        

       只绘出满足下列条件的点 r > 0 and 0< \theta < 2 \pi.

  4. 我们可以对图像中所有的点进行上述操作. 如果两个不同点进行上述操作后得到的曲线在平面 \theta - r 相交, 这就意味着它们通过同一条直线. 例如, 接上面的例子我们继续对点: x_{1} = 9, y_{1} = 4 和点 x_{2} = 12, y_{2} = 3 绘图, 得到下图:

                                                          

     这三条曲线在 \theta - r 平面相交于点 (0.925, 9.6), 坐标表示的是参数对 (\theta, r) 或者是说点 (x_{0}, y_{0}), 点 (x_{1}, y_{1}) 和点 (x_{2}, y_{2}) 组成的平面内的的直线.

  5. 那么以上的材料要说明什么呢? 这意味着一般来说, 一条直线能够通过在平面 \theta - r 寻找交于一点的曲线数量来 检测. 越多曲线交于一点也就意味着这个交点表示的直线由更多的点组成. 一般来说我们可以通过设置直线上点的 阈值 来定义多少条曲线交于一点我们才认为 检测 到了一条直线.


  6. 这就是霍夫线变换要做的. 它追踪图像中每个点对应曲线间的交点. 如果交于一点的曲线的数量超过了 阈值, 那么可以认为这个交点所代表的参数对 (\theta, r_{\theta}) 在原图像中为一条直线.


标准霍夫线变换和统计概率霍夫线变换

  a. 标准霍夫线变换

        原理在上面的部分已经说明了. 它能给我们提供一组参数对(\theta, r_{\theta})  的集合来表示检测到的直线

       在OpenCV 中通过函数 HoughLines 来实现


 b . 统计概率霍夫线变换

       这是执行起来效率更高的霍夫线变换. 它输出检测到的直线的端点 (x_{0}, y_{0}, x_{1}, y_{1})

      在OpenCV 中它通过函数 HoughLinesP 来实现


1. 标准霍夫线变换

    在Python 的 OpenCV版本中 标准霍夫线变换 函数为 cv2.HoughLines。它输入一幅含有点集的二值图(由非0像素表示),其中一些点互相联系组成直线。

通常这通过如 Canny 算子获得的一幅边缘图像。

   cv2.HoughLines 函数输出的是 [ float,float ] 形式的ndarray,其中每个值表示检测到的线(ρ,θ)中浮点值的参数。

示例:

[python] view plain copy
  1. #!/usr/bin/env python    
  2. # encoding: utf-8    
  3. import cv2    
  4. import numpy as np   
  5.   
  6. img = cv2.imread("6.jpg"0)    
  7.     
  8. img = cv2.GaussianBlur(img,(3,3),0)    
  9. edges = cv2.Canny(img, 50150, apertureSize = 3)    
  10.   
  11. #(函数参数3和参数4) 通过步长为1的半径和步长为π/180的角来搜索所有可能的直线  
  12. #118 --是经过某一点曲线的数量的阈值  
  13. lines = cv2.HoughLines(edges,1,np.pi/180,118)  #这里对最后一个参数使用了经验型的值   
  14. result = img.copy()    
  15. for line in lines[0]:   
  16.     rho = line[0#第一个元素是距离rho    
  17.     theta= line[1#第二个元素是角度theta    
  18.     print rho    
  19.     print theta    
  20.     if  (theta < (np.pi/4. )) or (theta > (3.*np.pi/4.0)): #垂直直线    
  21.                 #该直线与第一行的交点    
  22.         pt1 = (int(rho/np.cos(theta)),0)    
  23.         #该直线与最后一行的焦点    
  24.         pt2 = (int((rho-result.shape[0]*np.sin(theta))/np.cos(theta)),result.shape[0])    
  25.         #绘制一条白线    
  26.         cv2.line( result, pt1, pt2, (255))    
  27.     else#水平直线    
  28.         # 该直线与第一列的交点    
  29.         pt1 = (0,int(rho/np.sin(theta)))    
  30.         #该直线与最后一列的交点    
  31.         pt2 = (result.shape[1], int((rho-result.shape[1]*np.cos(theta))/np.sin(theta)))    
  32.         #绘制一条直线    
  33.         cv2.line(result, pt1, pt2, (255), 1)    
  34.     
  35. cv2.imshow('Canny', edges )    
  36. cv2.imshow('Result', result)    
  37. cv2.waitKey(0)    
  38. cv2.destroyAllWindows()    


效果图:


注意:

  在Opencv C++ 版本中,HoughLines 函数得到的结果是一个向量lines, 其中的元素是由两个元素组成的向量(rho , theta),所以 lines 的访问方式类似二维数组

[python] view plain copy
  1. std::vector<cv::Vec2f>::const_iterator it= lines.begin();    
  2. float rho= (*it)[0];    
  3. float theta= (*it)[1];    

 OpenCV Python 版本中,返回的是一个三维的 np.ndarray 。可通过检验HoughLines 返回的 lines 的 ndim 属性得到。
[python] view plain copy
  1. lines = cv2.HoughLines(edges,1,np.pi/180,118)    
  2.   
  3. # 输出结果  
  4. #lines.ndim属性    
  5. (152#lines.shape属性    
  6.     
  7. #lines[0]    
  8. [[  4.20000000e+01   2.14675498e+00]    
  9.  [  4.50000000e+01   2.14675498e+00]    
  10.  [  3.50000000e+01   2.16420817e+00]    
  11.  [  1.49000000e+02   1.60570288e+00]    
  12.  [  2.24000000e+02   1.74532920e-01]]    
  13. ===============    
  14. #lines本身    
  15. [[[  4.20000000e+01   2.14675498e+00]    
  16.   [  4.50000000e+01   2.14675498e+00]    
  17.   [  3.50000000e+01   2.16420817e+00]    
  18.   [  1.49000000e+02   1.60570288e+00]    
  19.   [  2.24000000e+02   1.74532920e-01]]]    


1.概率霍夫变换

   通过上面的例子可以看出,其中 Hough 变换看起来就像在图像中查找对齐的边界像素点集合。但这样会在一些情况下导致虚假检测,如像素偶然对齐或多条直线

穿过同样的对齐像素造成的多重检测。

  要避免这样的问题,并检测图像中分段的直线(而不是贯穿整个图像的直线),由此出现了 概率 Hough 变换(Probabilistic Hough)

Python 版本中 由 cv2.HoughLinesP 实现:

[python] view plain copy
  1. #!/usr/bin/env python    
  2. # encoding: utf-8    
  3. import cv2    
  4. import numpy as np   
  5.   
  6. img = cv2.imread("6.jpg")    
  7.     
  8. img = cv2.GaussianBlur(img,(3,3),0)    
  9. edges = cv2.Canny(img, 50150, apertureSize = 3)    
  10. lines = cv2.HoughLines(edges,1,np.pi/180,118)    
  11. result = img.copy()    
  12.     
  13. #经验参数    
  14. minLineLength = 200    
  15. maxLineGap = 15    
  16. lines = cv2.HoughLinesP(edges,1,np.pi/180,80,minLineLength,maxLineGap)    
  17. for x1,y1,x2,y2 in lines[0]:    
  18.     cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)    
  19.     
  20. cv2.imshow('Result', img)    
  21. cv2.waitKey(0)    
  22. cv2.destroyAllWindows()   

效果图:




本文参考和转载:
代码程序使用 sunny2038 博客所提供
http://blog.csdn.net/sunny2038/article/details/9253823
http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtrans/hough_lines/hough_lines.html
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页