待分析命题
设 { f k } \left\{ { {f}_{k}} \right\} { fk}是 E E E上的非负可测函数列。若 lim k → ∞ ∫ E f k ( x ) d x = 0 \underset{k\to \infty }{\mathop{\lim }}\,\int_{E}{ { {f}_{k}}\left( x \right)dx}=0 k→∞lim∫Efk(x)dx=0,则 f k { {f}_{k}} fk在 E E E上依测度收敛于 0 0 0。
证明过程
∀ k \forall k ∀k,由于 f k {
{f}_{k}} fk是可测集 E E E上的可测函数,根据课本P59的定义3.1,
E ( ∣ f k ∣ ≥ δ ) ⊂ E 是 E 的 一 个 可 测 子 集 。 E\left( \left| {
{f}_{k}} \right|\ge \delta \right)\subset E是E的一个可测子集。 E(∣fk∣≥δ)⊂E是E的一个可测子集。
再根据课本P62的定理3.4,得
非 负 函 数 f k 在 E ( ∣ f k ∣ ≥ δ ) 上 的 限 制 还 是 一 个 可 测 函 数 , 非负函数{
{f}_{k}}在E\left( \left| {
{f}_{k}} \right|\ge \delta \right)上的限制还是一个可测函数, 非负函数fk在E(∣fk∣≥δ)上的限制还是一个可测函数,
因此Lebesgue积分
∫ E f k ( x ) d x , ∫ E ( ∣ f k ∣ ≥ δ ) f k ( x ) d x \int_{E}{
{
{f}_{k}}\left( x \right)dx},\text{ }\int_{E\left( \left| {
{f}_{k}} \right|\ge \delta \right)}{
{
{f}_{k}}\left( x \right)dx} ∫