《实变函数简明教程》,第四章:Lebesgue积分,非负可测函数列的Lebesgue积分极限为0 推导 依测度收敛于0

该博客详细推导了非负可测函数列在Lebesgue积分极限为0的情况下如何依测度收敛于0。通过利用课本中的定义和定理,博主逐步证明了当k→∞时,对于任何δ>0,函数fk在E上的测度趋于0,从而得出函数列依测度在E上收敛到0的结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《实变函数简明教程》,第四章:Lebesgue积分,非负可测函数列的Lebesgue积分极限为0 推导 依测度收敛于0

待分析命题

  设 { f k } \left\{ { {f}_{k}} \right\} { fk} E E E上的非负可测函数列。若 lim ⁡ k → ∞   ∫ E f k ( x ) d x = 0 \underset{k\to \infty }{\mathop{\lim }}\,\int_{E}{ { {f}_{k}}\left( x \right)dx}=0 klimEfk(x)dx=0,则 f k { {f}_{k}} fk E E E上依测度收敛于 0 0 0

证明过程

∀ k \forall k k,由于 f k { {f}_{k}} fk是可测集 E E E上的可测函数,根据课本P59的定义3.1,
E ( ∣ f k ∣ ≥ δ ) ⊂ E 是 E 的 一 个 可 测 子 集 。 E\left( \left| { {f}_{k}} \right|\ge \delta \right)\subset E是E的一个可测子集。 E(fkδ)EE
再根据课本P62的定理3.4,得
非 负 函 数 f k 在 E ( ∣ f k ∣ ≥ δ ) 上 的 限 制 还 是 一 个 可 测 函 数 , 非负函数{ {f}_{k}}在E\left( \left| { {f}_{k}} \right|\ge \delta \right)上的限制还是一个可测函数, fkE(fkδ)
因此Lebesgue积分
∫ E f k ( x ) d x ,   ∫ E ( ∣ f k ∣ ≥ δ ) f k ( x ) d x \int_{E}{ { {f}_{k}}\left( x \right)dx},\text{ }\int_{E\left( \left| { {f}_{k}} \right|\ge \delta \right)}{ { {f}_{k}}\left( x \right)dx}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值