【论文笔记】:PSS(NMS-free)

本文介绍了PSS,一种无需NMS的端到端目标检测方法,它通过附加PSS头自动选择每个实例的唯一正样本。PSS解决了标签冲突问题,适用于FCOS和其他基于anchor box的检测器,如RetinaNet,提高了检测效率和灵活性,且在COCO数据集上表现出色。
摘要由CSDN通过智能技术生成

&Title

在这里插入图片描述

&Summary

Motivation:如果网络只能为图像中的每个实例对象识别一个正样本,那么就没有必要使用NMS。

all the locations on the CNN feature maps within the center region of an object are assigned positive labels. As a result, multiple network outputs correspond to one target object. The consequence is that for inference, a mechanism (namely, NMS) is needed to choose the best positive sample among all the positive boxes.

作者提出了一个简单的NMS-free、端到端目标检测框架,该网络是对单级目标检测器(如FCOS、ATSS)的最小修改,可达到同等甚至更高的检测精度。它以几乎相同的推断速度执行检测,同时更简单,因为现在在插入期间消除了后处理NMS(非最大抑制)。

作者通过附加一个PSS head自动为每个实例选择单一正样本。通过采用停止梯度操作,解决学习目标产生的标签冲突问题(面对的一对多,一对一的标签分配,有些标签冲突的训练的例子,会使得学习具有挑战性)

PSS Advantages
  • 去除了 NMS 后,检测更加简洁。FCOSPSS继承了 FCOS 的简洁,FCOSPSS可与其它可用 FCN 解决的任务完全兼容。
  • 证明了 NMS 可以通过一个简单的 PSS head 去除,计算量可以忽略不计。
  • PSS 非常灵活,PSS head 本质上是可以学习的 NMS。通过设计,FCOS heads 也可以与原来的检测器表现一样好,FCOSPSS就在是否使用 NMS 方面给出了足够的灵活度。例如,一旦训练好,我们可以选择不用 PSS head,将 FCOSPSS作为标准的 FCOS 使用。
  • 作者报告了 COCO 数据集上的检测结果,与标准 FCOS 和 ATSS 检测器,以及最近的 NMS-free 检测器做了比较。
  • PSS head 也适用于其它基于 anchor box 的检测器,比如 RetinaNet。在 RetinaNet 检测器中加入 PSS 后,作者得到了优异的结果,该方法在每个位置上应用一个正方形的 anchor box,并且采用了自适应训练采样来提升检测准确率。
  • 这个思想也可以用到其他实例识别任务上。例如,我们可以在实例分割任务上去掉 NMS。作者希望本工作可以让基于 FCOS 检测器的工作受益,包括实例分割、关键点检测、文本检测、跟踪等。

&Research Objective

NMS-free

anchor-free 的检测器如 FCOS 和 FoveaBox提出后,NMS 成为了整个流程中仅有的启发式后处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值