&Title
&Summary
Motivation:如果网络只能为图像中的每个实例对象识别一个正样本,那么就没有必要使用NMS。
all the locations on the CNN feature maps within the center region of an object are assigned positive labels. As a result, multiple network outputs correspond to one target object. The consequence is that for inference, a mechanism (namely, NMS) is needed to choose the best positive sample among all the positive boxes.
作者提出了一个简单的NMS-free、端到端目标检测框架,该网络是对单级目标检测器(如FCOS、ATSS)的最小修改,可达到同等甚至更高的检测精度。它以几乎相同的推断速度执行检测,同时更简单,因为现在在插入期间消除了后处理NMS(非最大抑制)。
作者通过附加一个PSS head自动为每个实例选择单一正样本。通过采用停止梯度操作,解决学习目标产生的标签冲突问题(面对的一对多,一对一的标签分配,有些标签冲突的训练的例子,会使得学习具有挑战性)
PSS Advantages
- 去除了 NMS 后,检测更加简洁。FCOSPSS继承了 FCOS 的简洁,FCOSPSS可与其它可用 FCN 解决的任务完全兼容。
- 证明了 NMS 可以通过一个简单的 PSS head 去除,计算量可以忽略不计。
- PSS 非常灵活,PSS head 本质上是可以学习的 NMS。通过设计,FCOS heads 也可以与原来的检测器表现一样好,FCOSPSS就在是否使用 NMS 方面给出了足够的灵活度。例如,一旦训练好,我们可以选择不用 PSS head,将 FCOSPSS作为标准的 FCOS 使用。
- 作者报告了 COCO 数据集上的检测结果,与标准 FCOS 和 ATSS 检测器,以及最近的 NMS-free 检测器做了比较。
- PSS head 也适用于其它基于 anchor box 的检测器,比如 RetinaNet。在 RetinaNet 检测器中加入 PSS 后,作者得到了优异的结果,该方法在每个位置上应用一个正方形的 anchor box,并且采用了自适应训练采样来提升检测准确率。
- 这个思想也可以用到其他实例识别任务上。例如,我们可以在实例分割任务上去掉 NMS。作者希望本工作可以让基于 FCOS 检测器的工作受益,包括实例分割、关键点检测、文本检测、跟踪等。
&Research Objective
NMS-free
anchor-free 的检测器如 FCOS 和 FoveaBox提出后,NMS 成为了整个流程中仅有的启发式后处理。