【论文笔记】:LLA: Loss-aware Label Assignment for Dense Pedestrian Detection

LLA论文笔记

在这里插入图片描述

Summary

标签分配策略对检测器的性能影响很大,现有研究都是在常规的通用目标检测上做,不适用于密集行人检测场景。

作者提出了一种简单有效的分配策略,称为损失感知的标签分配(LLA),以提高人群场景中行人检测的性能。LLA首先计算每个锚点与GT对之间的分类(cls)和回归(reg)损失。然后将联合损失定义为cls和reg损失的加权总和作为分配指标。最后,将某个GT具有K个最小联合损失的锚定为其正锚。未分配给任何GT盒的锚定为负锚。

在CrowdHuman和CityPersons上进行的实验表明,这种简单的标签分配策略可以在两个流行的一阶段检测器RetinaNet和FCOS上将MR分别提高9.53%和5.47%,证明了LLA的有效性。

Contribution
  • 提出了一种简单有效的分配策略,称为损失感知的标签分配(LLA),以提高人群场景中行人检测的性能。
  • 在CrowdHuman和CityPersons上进行的实验表明,这种简单的标签分配策略可以在两个流行的一阶段检测器RetinaNe
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值