【论文笔记】:EFPN

本文介绍了一种名为EFPN的扩展特征金字塔网络,针对小物体检测的挑战,通过特征纹理转移(FTT)模块和前景-背景平衡损失函数,提高了检测性能。EFPN在小物体检测数据集上取得了最新成果。
摘要由CSDN通过智能技术生成

&Title

在这里插入图片描述

&Summary

挑战: 小物体检测仍然是一个尚未解决的挑战,因为很难仅提取几个像素的小物体信息。

先前工作: 虽然在特征金字塔网络中进行尺度级别的相应检测可以缓解此问题,但我们发现各种尺度的特征耦合仍然会损害小物体的性能。

ours methods: 提出了扩展特征金字塔网络(EFPN),它具有专门用于小目标检测的超高分辨率金字塔等级。
具体来说:

  • 设计了一个新颖的模块,称为特征纹理转移(FTT),该模块用于超分辨特征并同时提取可信的区域细节。
  • 设计了前景-背景平衡损失函数来减轻前景和背景的面积不平衡。

效果: 所提出的EFPN在计算和存储上都是有效的,并且在小型交通标志数据集清华腾讯100K小型通用对象检测数据集MS COCO上产生了最新的结果。

contributions:
  • 我们提出了扩展特征金字塔网络(EFPN),它可以提高小物体检测的性能。
  • 我们设计了一个基于关键特征参考的SR模块,称为特征纹理转移(FTT),为扩展的特征金字塔提供了可信的细节,从而可以更精确地检测小物体。
  • 引入了前景背景平衡损失函数,以引起人们对正像素的注意,减轻了前景和背景的面积失衡。
  • 我们的高效方法大大提高了探测器的性能,并成为清华腾讯100K和小类别的探测器的最新技术

&Research Objective

  • 小目标检测

虽然在特征金字塔网络中进行尺度级别的相应检测可以缓解此问题,但作者

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值