&Title
&Summary
挑战: 小物体检测仍然是一个尚未解决的挑战,因为很难仅提取几个像素的小物体信息。
先前工作: 虽然在特征金字塔网络中进行尺度级别的相应检测可以缓解此问题,但我们发现各种尺度的特征耦合仍然会损害小物体的性能。
ours methods: 提出了扩展特征金字塔网络(EFPN),它具有专门用于小目标检测的超高分辨率金字塔等级。
具体来说:
- 设计了一个新颖的模块,称为特征纹理转移(FTT),该模块用于超分辨特征并同时提取可信的区域细节。
- 设计了前景-背景平衡损失函数来减轻前景和背景的面积不平衡。
效果: 所提出的EFPN在计算和存储上都是有效的,并且在小型交通标志数据集清华腾讯100K和小型通用对象检测数据集MS COCO上产生了最新的结果。
contributions:
- 我们提出了扩展特征金字塔网络(EFPN),它可以提高小物体检测的性能。
- 我们设计了一个基于关键特征参考的SR模块,称为特征纹理转移(FTT),为扩展的特征金字塔提供了可信的细节,从而可以更精确地检测小物体。
- 引入了前景背景平衡损失函数,以引起人们对正像素的注意,减轻了前景和背景的面积失衡。
- 我们的高效方法大大提高了探测器的性能,并成为清华腾讯100K和小类别的探测器的最新技术
&Research Objective
- 小目标检测
虽然在特征金字塔网络中进行尺度级别的相应检测可以缓解此问题,但作者