lenet结构:
-
输入层(Input Layer):接收手写数字的图像数据,通常是28x28的灰度图像。
-
卷积层1(Convolutional Layer 1):对输入图像进行卷积操作,提取低级别的特征,使用 6 个大小为 5x5 的卷积核进行卷积,得到 6 个输出特征图,激活函数为 Sigmoid。
-
平均池化层1(Average Pooling Layer 1):对卷积层1的输出特征图进行 2x2 的平均池化操作,将特征图的尺寸减半。
-
卷积层2(Convolutional Layer 2):对平均池化层1的输出特征图进行卷积操作,进一步提取中级别的特征,使用 16 个大小为 5x5 的卷积核进行卷积,得到 16 个输出特征图,激活函数为 Sigmoid。
-
平均池化层2&#x