全连接层FC

14 篇文章 0 订阅
LeNet模型包含2个全连接层,用于将卷积层的输出转换成类别概率。多层FC能学习非线性特征,提高分类准确率。参数过大时,可用全局平均池化或卷积层替换FC。输入图片尺寸不匹配可通过调整网络结构或使用数据预处理解决。
摘要由CSDN通过智能技术生成

lenet结构:

  • 输入层(Input Layer):接收手写数字的图像数据,通常是28x28的灰度图像。

  • 卷积层1(Convolutional Layer 1):对输入图像进行卷积操作,提取低级别的特征,使用 6 个大小为 5x5 的卷积核进行卷积,得到 6 个输出特征图,激活函数为 Sigmoid。

  • 平均池化层1(Average Pooling Layer 1):对卷积层1的输出特征图进行 2x2 的平均池化操作,将特征图的尺寸减半。

  • 卷积层2(Convolutional Layer 2):对平均池化层1的输出特征图进行卷积操作,进一步提取中级别的特征,使用 16 个大小为 5x5 的卷积核进行卷积,得到 16 个输出特征图,激活函数为 Sigmoid。

  • 平均池化层2&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坠金

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值