前言
美国政府正在探索如何使用人工智能来增强其网络能力,如何使用人工智能来加强网络防御,以及如何最好地保护能力日益增强的人工智能系统。公平地说,人工智能在异常检测等网络防御领域的应用已有多年。但生成式人工智能(尤其是大语言模型)的最新发展引起了高层政策对网络与人工智能间联系的新关注。未来几年将是美国政府如何界定人工智能在网络操作中的作用的重要时期。
三、剑更锋利,盾更坚固
美国政府正在探索如何使用人工智能来增强其网络能力,如何使用人工智能来加强网络防御,以及如何最好地保护能力日益增强的人工智能系统。公平地说,人工智能在异常检测等网络防御领域的应用已有多年。但生成式人工智能(尤其是大语言模型)的最新发展引起了高层政策对网络与人工智能间联系的新关注。未来几年将是美国政府如何界定人工智能在网络操作中的作用的重要时期。
作为说明性示例,请考虑人工智能在漏洞发现中的作用。这在美国白宫人工智能行政命令中被列为国防部和国土安全部试点的一项任务,也很可能成为当前美国防高级研究计划局(DARPA)“人工智能网络挑战赛”的重要组成部分。发现代码中漏洞的方法之一是通过模糊测试,这是一种将随机或变异输入传递给程序以发现任何意外行为(例如缓冲区溢出)的技术。安全研究人员和威胁行为者多年来一直使用模糊测试来发现漏洞。然而,挑战之一是模糊测试的可扩展性不太好。模糊测试过程的关键方面通常是手动的,并且不会探索整个代码库。
然而,最近大语言模型性能的提高有可能部