一些定义
不动元, 不动域
-
设 G G G是域 E E E的自同构群 Aut ( E ) \text{Aut}(E) Aut(E)的任意一个子群, 元素 α ∈ E \alpha\in E α∈E. 如果任取 σ ∈ G \sigma\in G σ∈G, 都有 σ ( α ) = α \sigma(\alpha)=\alpha σ(α)=α, 那么就称 α \alpha α为 G G G的一个不动元(invariant element).
-
群 G G G的不动元的集合
Inv ( G ) = { α ∈ E ∣ σ ( α ) = α , ∀ σ ∈ G } \text{Inv}(G)=\{\alpha\in E\,|\,\sigma(\alpha)=\alpha,\,\forall\sigma\in G\} Inv(G)={α∈E∣σ(α)=α,∀σ∈G}
构成 E E E的一个子域, 称为 G G G的不动域(invariant field). 不动域也表示为 E G E^G EG. -
Galois扩张: 如果域扩张 E / F E/F E/F的伽罗瓦群 Gal ( E / F ) \text{Gal}(E/F) Gal(E/F)的不动域恰好等于 F F F, 称 E / F E/F E/F是一个伽罗瓦扩张.
-
设 E E E是 F F F的Galois扩张, L L L是一个中间域, 任取 σ ∈ Gal ( E / F ) \sigma\in\text{Gal}(E/F) σ∈Gal(E/F), 称 σ ( L ) \sigma(L) σ(L)为 L L L的共轭子域(conjugate subfield).
Artin引理
设
E
E
E是一个域,
G
G
G是
E
E
E的自同构群的一个有限子群,
F
=
Inv
(
G
)
=
E
G
F=\text{Inv}(G)=E^G
F=Inv(G)=EG是
G
G
G的不动域, 则
[
E
:
F
]
=
[
E
:
E
G
]
⩽
∣
G
∣
.
[E:F]=[E:E^G]\leqslant|G|.
[E:F]=[E:EG]⩽∣G∣.
证明:
设 ∣ G ∣ = n |G| =n ∣G∣=n, G = { id = ρ 0 , ρ 1 , … , ρ n − 1 } G=\{\text{id}=\rho_0,\,\rho_1,\, \ldots,\,\rho_{n-1}\} G={id=ρ0,ρ1,…,ρn−1}, 则显然, 将 ρ 1 \rho_1 ρ1作用在 G G G每个元素左边, G G G仍保持不变, 即
G = { ρ 1 ∘ ρ 0 , ρ 1 ∘ ρ 1 , … , ρ 1 ∘ ρ n − 1 } , G=\{\rho_1 \circ \rho_0,\rho_1 \circ \rho_1, \ldots , \rho_1\circ \rho_{n_-1}\}, G={ρ1∘ρ0,ρ1∘ρ1,…,ρ1∘ρn−1},
欲证上述引理, 我们只需证, ∀ α 1 , … , α n + 1 ∈ E \forall \alpha_1, \ldots ,\alpha_{n+1}\in E ∀α1,…,αn+1∈E, 线性相关, 即$ \exists k_1, \ldots ,k_{n+1}\in F,\text{s.t.} \ $
k 1 α 1 + ⋯ + k n + 1 α n + 1 = 0 , k_1\alpha_1+ \cdots +k_{n+1}\alpha_{n+1}=0, k1α1+⋯+kn+1αn+1=0,其中 k 1 , … , k n + 1 k_1, \ldots ,k_{n+1} k1,…,kn+1不全为 0 0 0.
令 ρ i \rho_i ρi作用在上式两端, 得到下面的 n n n个 n + 1 n+1 n+1元方程:
k 1 ρ i ( α 1 ) + ⋯ + k n + 1 ρ i ( α n + 1 ) = 0 , i = 0 , … , n − 1 ( 1 ) k_1\rho_i(\alpha_1)+\dots+k_{n+1}\rho_i(\alpha_{n+1})=0,\,i=0,\dots,n-1\qquad (1) k1ρi(α1)+⋯+kn+1ρi(αn+1)=0,i=0,…,n−1(1)
于是我们只需证上式在 E E E中有非零解.而方程组 ( 1 ) (1) (1)在 E E E中的解设为 W W W, 在 E G = F E^G=F EG=F中的解设为 W ′ W' W′, 下面分类讨论:
w ∈ W w\in W w∈W,则令 t = x 1 − 1 , t w ∈ W t=x_1^{-1},tw\in W t=x1−1,tw∈W,于是
( x 1 , . . . , x n + 1 ) → ( 1 , x 2 ′ . . . , x n + 1 ′ ) ∈ W ; (x_1,\,...,x_{n+1})\to(1,x_2'...,x_{n+1}')\in W; (x1,...,xn+1)→(1,x2′...,xn+1′)∈W;w ∉ W , x 2 ∉ E G = K w\not\in W, x_2\not\in E^G=K w∈W,x2∈EG=K, 必 ∃ ρ ∗ ∈ G , ρ ∗ ( x 2 ) ≠ x 2 \exist \rho^*\in G,\rho^*(x_2)\ne x_2 ∃ρ∗∈G,ρ∗(x2)=x2,
w = ( 1 , x 2 , . . . ) ∈ W , ρ ( w ) = ( 1 , ρ ( x 2 ) , . . . , ρ ( x n + 1 ) ) ∈ W \begin{aligned} w&=(1,x_2,...)\in W,\\ \rho(w)&=(1,\rho(x_2),...,\rho(x_{n+1}))\in W \end{aligned} wρ(w)=(1,x2,...)∈W,=(1,ρ(x2),...,ρ(xn+1))∈W即 ρ ( w ) \rho(w) ρ(w)是
k 1 ρ ( ρ i ( α 1 ) ) + . . . + k n + 1 ρ ( ρ i ( α n + 1 ) ) = 0 , ( i = 0 , . . . , n − 1 ) k_1\rho(\rho_i(\alpha_1))+...+k_{n+1}\rho(\rho_i(\alpha_{n+1}))=0,\,(i=0,...,n-1) k1ρ(ρi(α1))+...+kn+1ρ(ρi(αn+1))=0,(i=0,...,n−1)
的解, 适当调整顺序后, 可知上式有非零解. 重复上面的步骤, 即可得知结论成立.
正规扩张和可分扩张
E / K E/K E/K为域扩张(有限),若 [ E : K ] = ♯ Aut ( E / K ) = ( { ρ ∣ ρ : E → E 的 K − 同 构 } , ∘ ) [E:K]=\sharp\text{Aut}(E/K)=(\{\rho\,|\,\rho:E\to E的K-同构\},\,\circ) [E:K]=♯Aut(E/K)=({ρ∣ρ:E→E的K−同构},∘), 则 E / K E/K E/K有如下性质:
-
∀
α
1
∈
E
\forall\alpha_1\in E
∀α1∈E,
p
1
(
x
)
p_1(x)
p1(x)为
α
1
\alpha_1
α1在
K
K
K 上的极小多项式, 则
p
1
(
x
)
p_1(x)
p1(x)在
E
E
E中必有
deg
p
1
\deg p_1
degp1个根,
{ a : p 1 ( x ) 在 E 上 分 裂 : 正规扩张 b : p 1 ( x ) 在 E 上 无 重 根 : 可分扩张 \begin{cases} a: \ p_1(x)在E上分裂: \textbf{正规扩张}\\ b: \ p_1(x)在E上无重根: \textbf{可分扩张}\\ \end{cases} {a: p1(x)在E上分裂:正规扩张b: p1(x)在E上无重根:可分扩张
Galois群
如果
E
E
E是域
F
F
F的一个扩张,
E
E
E的
F
−
F-
F−自同构的集合
Gal
(
E
/
F
)
=
{
σ
∈
Aut
(
E
)
∣
σ
∣
F
=
id
}
\text{Gal}(E/F)=\{\sigma\in\text{Aut}(E)\,|\,\sigma|_F=\text{id}\}
Gal(E/F)={σ∈Aut(E)∣σ∣F=id}
构成
Aut
(
E
)
\text{Aut}(E)
Aut(E)的一个子群, 称为
E
E
E在
F
F
F上的伽罗瓦群(Galois group).
Galois基本定理
设 E E E 是域 F F F的一个伽罗瓦扩张, G = Gal ( E / F ) G=\text{Gal}(E/F) G=Gal(E/F). 记 H = { H ∣ H ⩽ G } \mathcal{H}=\{H\,|\,H\leqslant G\} H={H∣H⩽G}, L = { L ∣ F ⊆ L ⊆ E } \mathcal{L}=\{L\,|\,F\subseteq L\subseteq E\} L={L∣F⊆L⊆E}是 F F F与 E E E的中间域所成集合, 那么存在如下两个映射:
Gal : L → H , L ↦ Gal ( E / L ) , Inv : H → L , H ↦ Inv ( H ) , \text{Gal}:\,\mathcal{L}\to\mathcal{H},\,L\mapsto\text{Gal}(E/L),\quad\text{Inv}:\,\mathcal{H}\to\mathcal{L},\,H\mapsto\text{Inv}(H), Gal:L→H,L↦Gal(E/L),Inv:H→L,H↦Inv(H),
满足如下的五条性质:
Gal \text{Gal} Gal和 Inv \text{Inv} Inv互为逆映射, 因而均为一一映射;
上述一一映射存在反包含关系: 子群 H 1 , H 2 H_1,H_2 H1,H2分别与中间域 L 1 , L 2 L_1,\,L_2 L1,L2一一对应时,有
H 1 ⊇ H 2 ⟺ L 1 ⊆ L 2 ; H_1\supseteq H_2\iff L_1\subseteq L_2; H1⊇H2⟺L1⊆L2;
(下面的描述均满足子群与中间域的一一对应)[ E : L ] = ∣ H ∣ , [ L : F ] = [ G : H ] [E:L]=|H|,\,[L:F]=[G:H] [E:L]=∣H∣,[L:F]=[G:H];
∀ σ ∈ G \forall\sigma\in G ∀σ∈G, $H 的 正 规 子 群 的正规子群 的正规子群\sigma H\sigma^{-1} 与 与 与L 的 共 轭 子 域 的共轭子域 的共轭子域\sigma(L)$一一对应;
H ⊴ G H\unlhd G H⊴G当且仅当 L L L是 F F F的伽罗瓦扩张, 这时有 Gal ( L / F ) ≃ G / H \text{Gal}(L/F)\simeq G/H Gal(L/F)≃G/H.
推论
E / K E/K E/K为 Gal \text{Gal} Gal的( K K K的特征为0,且 [ E : K ] [E:K] [E:K]有限), 则必存在 α ∈ E \alpha\in E α∈E,使得 K ( α ) = E K(\alpha)=E K(α)=E.
证明:
记 X = { K = M 0 , M 1 , . . . , M n − 1 = E } X=\{K=M_0,M_1,...,M_{n-1}=E\} X={K=M0,M1,...,Mn−1=E}为 E / K E/K E/K所有的中间域, 则
- M 0 , . . . , M n − 2 M_0,...,M_{n-2} M0,...,Mn−2为 X X X真子集;
- M i M_i Mi可以看成 E E E( E E E可以看成 K K K上的线性空间)的真子线性空间;
- 根据高等代数(丘维声创新教材下192页例题10)补充题 ∗ {}^* ∗有 ⋃ i = 0 n − 2 M i ≠ E \bigcup\limits_{i=0}^{n-2}M_i\ne E i=0⋃n−2Mi=E;
- ∃ α ∈ E , α ∉ M i , i = 0 , . . . , n − 2 \exist\alpha\in E,\alpha\not\in M_i,i=0,...,n-2 ∃α∈E,α∈Mi,i=0,...,n−2, 则 K ( α ) = E K(\alpha)=E K(α)=E.
*: 丘维声高等代数创新教材下192页例题10(北大版高等代数线性空间补充题最后一题)
- 设
V
1
,
V
2
,
.
.
.
,
V
s
V_1,V_2,...,V_s
V1,V2,...,Vs都是域
F
F
F上线性空间
V
V
V的真子空间,证明: 如果域
F
F
F的特征为
0
0
0,那么
V 1 ∪ V 2 ∪ ⋯ ∪ V s ≠ V . V_1\cup V_2\cup\cdots\cup V_{s}\ne V. V1∪V2∪⋯∪Vs=V.
利用数学归纳法及反证法.
当 s = 1 s=1 s=1时,显然有 V 1 ≠ V V_1\ne V V1=V成立;
设 s − 1 s-1 s−1时命题为真, 即
V 1 ∪ V 2 ∪ ⋯ ∪ V s − 1 ≠ V , V_1\cup V_2\cup\cdots\cup V_{s-1}\ne V, V1∪V2∪⋯∪Vs−1=V,
下面讨论 s s s的情况:根据上述假设, V V V中存在 α ∉ V 1 ∪ V 2 ∪ ⋯ ∪ V s − 1 \alpha\not\in V_1\cup V_2\cup\cdots\cup V_{s-1} α∈V1∪V2∪⋯∪Vs−1, 若 α ∉ V s \alpha\not\in V_s α∈Vs,命题成立.
若 α ∈ V s \alpha\in V_s α∈Vs, 因为 V s ≠ V V_s\ne V Vs=V, 所以 ∃ β ∉ V s \exist\beta\not\in V_s ∃β∈Vs, 若 β ∉ V 1 ∪ V 2 ∪ ⋯ ∪ V s − 1 \beta\not\in V_1\cup V_2\cup\cdots\cup V_{s-1} β∈V1∪V2∪⋯∪Vs−1, 则
β ∉ V 1 ∪ V 2 ∪ ⋯ ∪ V s − 1 ∪ V s , \beta\not\in V_1\cup V_2\cup\cdots\cup V_{s-1}\cup V_s, β∈V1∪V2∪⋯∪Vs−1∪Vs,
命题成立, 下面设 β ∈ V 1 ∪ V 2 ∪ ⋯ ∪ V s − 1 \beta\in V_1\cup V_2\cup\cdots\cup V_{s-1} β∈V1∪V2∪⋯∪Vs−1.由上述讨论知 α , β \alpha,\beta α,β不能同时属于 V i , i = 1 , 2 , . . . , s − 1 V_i,i=1,2,...,s-1 Vi,i=1,2,...,s−1, ∀ k i \forall k_i ∀ki, 考虑 α + k i β \alpha+k_i\beta α+kiβ, 若 α + k i β ∈ V i \alpha+k_i\beta\in V_i α+kiβ∈Vi, 则对其他 k ≠ k i k\ne k_i k=ki,有 α + k β ∉ V i \alpha+k\beta\not\in V_i α+kβ∈Vi, 不然, 可以得出 α , β ∈ V \alpha,\,\beta\in V α,β∈V, 矛盾.
于是对于任一 V i V_i Vi, 最多只有一个 k i k_i ki, 使得 α + k i β ∈ V i \alpha+k_i\beta\in V_i α+kiβ∈Vi, 取 k ∈ F k\in F k∈F使 k ≠ k 1 , k 2 , . . . , k s k\ne k_1,k_2,...,k_s k=k1,k2,...,ks, 则 α + k β ∉ V i , i = 1 , 2 , . . . , s \alpha+k\beta\not\in V_i,i=1,2,...,s α+kβ∈Vi,i=1,2,...,s. 证毕.
关于这个例题的证明, 更详细的步骤可参考丘维声高等代数创新教材下,192页. 本文中参考了北大版高等代数的习题解答.
主要参考
- 《近世代数》丘维声, 2015.
- 《代数学基础(下)》张英伯,王恺顺, 2013.
- 《高等代数》(北大第四版)王萼芳,石生明.
- 《高等代数创新教材(下)》丘维声.