代数学笔记4: Galois基本定理

本文介绍了伽罗瓦理论中的核心概念,包括不动元、不动域、正规扩张和可分扩张。Artin引理阐述了有限子群G的不动域的性质,证明了[E:F]≤|G|。Galois群是域扩张的自同构群,Galois基本定理揭示了中间域与子群之间的对应关系。文章还探讨了正规扩张和可分扩张的定义,并通过推论证明了在特定条件下存在使K(α)=E的α。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一些定义

不动元, 不动域

  • G G G是域 E E E的自同构群 Aut ( E ) \text{Aut}(E) Aut(E)的任意一个子群, 元素 α ∈ E \alpha\in E αE. 如果任取 σ ∈ G \sigma\in G σG, 都有 σ ( α ) = α \sigma(\alpha)=\alpha σ(α)=α, 那么就称 α \alpha α G G G的一个不动元(invariant element).

  • G G G的不动元的集合
    Inv ( G ) = { α ∈ E   ∣   σ ( α ) = α ,   ∀ σ ∈ G } \text{Inv}(G)=\{\alpha\in E\,|\,\sigma(\alpha)=\alpha,\,\forall\sigma\in G\} Inv(G)={αEσ(α)=α,σG}
    构成 E E E的一个子域, 称为 G G G不动域(invariant field). 不动域也表示为 E G E^G EG​.

  • Galois扩张: 如果域扩张 E / F E/F E/F的伽罗瓦群 Gal ( E / F ) \text{Gal}(E/F) Gal(E/F)的不动域恰好等于 F F F, 称 E / F E/F E/F是一个伽罗瓦扩张.

  • E E E F F F的Galois扩张, L L L是一个中间域, 任取 σ ∈ Gal ( E / F ) \sigma\in\text{Gal}(E/F) σGal(E/F), 称 σ ( L ) \sigma(L) σ(L) L L L共轭子域(conjugate subfield).

Artin引理

E E E是一个域, G G G E E E的自同构群的一个有限子群, F = Inv ( G ) = E G F=\text{Inv}(G)=E^G F=Inv(G)=EG G G G的不动域, 则
[ E : F ] = [ E : E G ] ⩽ ∣ G ∣ . [E:F]=[E:E^G]\leqslant|G|. [E:F]=[E:EG]G.
证明:

∣ G ∣ = n |G| =n G=n, G = { id = ρ 0 ,   ρ 1 ,   … ,   ρ n − 1 } G=\{\text{id}=\rho_0,\,\rho_1,\, \ldots,\,\rho_{n-1}\} G={id=ρ0,ρ1,,ρn1}, 则显然, 将 ρ 1 \rho_1 ρ1作用在 G G G每个元素左边, G G G仍保持不变, 即
G = { ρ 1 ∘ ρ 0 , ρ 1 ∘ ρ 1 , … , ρ 1 ∘ ρ n − 1 } , G=\{\rho_1 \circ \rho_0,\rho_1 \circ \rho_1, \ldots , \rho_1\circ \rho_{n_-1}\}, G={ρ1ρ0,ρ1ρ1,,ρ1ρn1},
欲证上述引理, 我们只需证, ∀ α 1 , … , α n + 1 ∈ E \forall \alpha_1, \ldots ,\alpha_{n+1}\in E α1,,αn+1E, 线性相关, 即$ \exists k_1, \ldots ,k_{n+1}\in F,\text{s.t.} \ $
k 1 α 1 + ⋯ + k n + 1 α n + 1 = 0 , k_1\alpha_1+ \cdots +k_{n+1}\alpha_{n+1}=0, k1α1++kn+1αn+1=0,

其中 k 1 , … , k n + 1 k_1, \ldots ,k_{n+1} k1,,kn+1不全为 0 0 0.

ρ i \rho_i ρi作用在上式两端, 得到下面的 n n n n + 1 n+1 n+1元方程:
k 1 ρ i ( α 1 ) + ⋯ + k n + 1 ρ i ( α n + 1 ) = 0 ,   i = 0 , … , n − 1 ( 1 ) k_1\rho_i(\alpha_1)+\dots+k_{n+1}\rho_i(\alpha_{n+1})=0,\,i=0,\dots,n-1\qquad (1) k1ρi(α1)++kn+1ρi(αn+1)=0,i=0,,n1(1)
于是我们只需证上式在 E E E中有非零解.

而方程组 ( 1 ) (1) (1) E E E中的解设为 W W W, 在 E G = F E^G=F EG=F中的解设为 W ′ W' W, 下面分类讨论:

  • w ∈ W w\in W wW,则令 t = x 1 − 1 , t w ∈ W t=x_1^{-1},tw\in W t=x11,twW,于是
    ( x 1 ,   . . . , x n + 1 ) → ( 1 , x 2 ′ . . . , x n + 1 ′ ) ∈ W ; (x_1,\,...,x_{n+1})\to(1,x_2'...,x_{n+1}')\in W; (x1,...,xn+1)(1,x2...,xn+1)W;

  • w ∉ W , x 2 ∉ E G = K w\not\in W, x_2\not\in E^G=K wW,x2EG=K, 必 ∃ ρ ∗ ∈ G , ρ ∗ ( x 2 ) ≠ x 2 \exist \rho^*\in G,\rho^*(x_2)\ne x_2 ρG,ρ(x2)=x2,
    w = ( 1 , x 2 , . . . ) ∈ W , ρ ( w ) = ( 1 , ρ ( x 2 ) , . . . , ρ ( x n + 1 ) ) ∈ W \begin{aligned} w&=(1,x_2,...)\in W,\\ \rho(w)&=(1,\rho(x_2),...,\rho(x_{n+1}))\in W \end{aligned} wρ(w)=(1,x2,...)W,=(1,ρ(x2),...,ρ(xn+1))W

ρ ( w ) \rho(w) ρ(w)
k 1 ρ ( ρ i ( α 1 ) ) + . . . + k n + 1 ρ ( ρ i ( α n + 1 ) ) = 0 ,   ( i = 0 , . . . , n − 1 ) k_1\rho(\rho_i(\alpha_1))+...+k_{n+1}\rho(\rho_i(\alpha_{n+1}))=0,\,(i=0,...,n-1) k1ρ(ρi(α1))+...+kn+1ρ(ρi(αn+1))=0,(i=0,...,n1)
的解, 适当调整顺序后, 可知上式有非零解. 重复上面的步骤, 即可得知结论成立.

正规扩张和可分扩张

E / K E/K E/K为域扩张(有限),若 [ E : K ] = ♯ Aut ( E / K ) = ( { ρ   ∣   ρ : E → E 的 K − 同 构 } ,   ∘ ) [E:K]=\sharp\text{Aut}(E/K)=(\{\rho\,|\,\rho:E\to E的K-同构\},\,\circ) [E:K]=Aut(E/K)=({ρρ:EEK},), 则 E / K E/K E/K有如下性质:

  1. ∀ α 1 ∈ E \forall\alpha_1\in E α1E, p 1 ( x ) p_1(x) p1(x) α 1 \alpha_1 α1 K K K 上的极小多项式, 则 p 1 ( x ) p_1(x) p1(x) E E E中必有 deg ⁡ p 1 \deg p_1 degp1个根,
    { a :   p 1 ( x ) 在 E 上 分 裂 : 正规扩张 b :   p 1 ( x ) 在 E 上 无 重 根 : 可分扩张 \begin{cases} a: \ p_1(x)在E上分裂: \textbf{正规扩张}\\ b: \ p_1(x)在E上无重根: \textbf{可分扩张}\\ \end{cases} {a: p1(x)E:正规扩张b: p1(x)E:可分扩张

Galois群

如果 E E E是域 F F F的一个扩张, E E E F − F- F自同构的集合
Gal ( E / F ) = { σ ∈ Aut ( E )   ∣   σ ∣ F = id } \text{Gal}(E/F)=\{\sigma\in\text{Aut}(E)\,|\,\sigma|_F=\text{id}\} Gal(E/F)={σAut(E)σF=id}
构成 Aut ( E ) \text{Aut}(E) Aut(E)的一个子群, 称为 E E E F F F上的伽罗瓦群(Galois group).

Galois基本定理

E E E 是域 F F F的一个伽罗瓦扩张, G = Gal ( E / F ) G=\text{Gal}(E/F) G=Gal(E/F). 记 H = { H   ∣   H ⩽ G } \mathcal{H}=\{H\,|\,H\leqslant G\} H={HHG}, L = { L   ∣   F ⊆ L ⊆ E } \mathcal{L}=\{L\,|\,F\subseteq L\subseteq E\} L={LFLE} F F F E E E的中间域所成集合, 那么存在如下两个映射:
Gal :   L → H ,   L ↦ Gal ( E / L ) , Inv :   H → L ,   H ↦ Inv ( H ) , \text{Gal}:\,\mathcal{L}\to\mathcal{H},\,L\mapsto\text{Gal}(E/L),\quad\text{Inv}:\,\mathcal{H}\to\mathcal{L},\,H\mapsto\text{Inv}(H), Gal:LH,LGal(E/L),Inv:HL,HInv(H),
满足如下的五条性质:

  1. Gal \text{Gal} Gal Inv \text{Inv} Inv互为逆映射, 因而均为一一映射;

  2. 上述一一映射存在反包含关系: 子群 H 1 , H 2 H_1,H_2 H1,H2分别与中间域 L 1 ,   L 2 L_1,\,L_2 L1,L2一一对应时,有
    H 1 ⊇ H 2    ⟺    L 1 ⊆ L 2 ; H_1\supseteq H_2\iff L_1\subseteq L_2; H1H2L1L2;
    (下面的描述均满足子群与中间域的一一对应)

  3. [ E : L ] = ∣ H ∣ ,   [ L : F ] = [ G : H ] [E:L]=|H|,\,[L:F]=[G:H] [E:L]=H,[L:F]=[G:H];

  4. ∀ σ ∈ G \forall\sigma\in G σG, $H 的 正 规 子 群 的正规子群 \sigma H\sigma^{-1} 与 与 L 的 共 轭 子 域 的共轭子域 \sigma(L)$一一对应;

  5. H ⊴ G H\unlhd G HG当且仅当 L L L F F F的伽罗瓦扩张, 这时有 Gal ( L / F ) ≃ G / H \text{Gal}(L/F)\simeq G/H Gal(L/F)G/H.

推论

E / K E/K E/K Gal \text{Gal} Gal的( K K K的特征为0,且 [ E : K ] [E:K] [E:K]有限), 则必存在 α ∈ E \alpha\in E αE,使得 K ( α ) = E K(\alpha)=E K(α)=E.

证明:

X = { K = M 0 , M 1 , . . . , M n − 1 = E } X=\{K=M_0,M_1,...,M_{n-1}=E\} X={K=M0,M1,...,Mn1=E} E / K E/K E/K所有的中间域, 则

  1. M 0 , . . . , M n − 2 M_0,...,M_{n-2} M0,...,Mn2 X X X真子集;
  2. M i M_i Mi可以看成 E E E( E E E可以看成 K K K上的线性空间)的真子线性空间;
  3. 根据高等代数(丘维声创新教材下192页例题10)补充题 ∗ {}^* ⋃ i = 0 n − 2 M i ≠ E \bigcup\limits_{i=0}^{n-2}M_i\ne E i=0n2Mi=E;
  4. ∃ α ∈ E , α ∉ M i , i = 0 , . . . , n − 2 \exist\alpha\in E,\alpha\not\in M_i,i=0,...,n-2 αE,αMi,i=0,...,n2, 则 K ( α ) = E K(\alpha)=E K(α)=E.

*: 丘维声高等代数创新教材下192页例题10(北大版高等代数线性空间补充题最后一题)

  • V 1 , V 2 , . . . , V s V_1,V_2,...,V_s V1,V2,...,Vs都是域 F F F上线性空间 V V V的真子空间,证明: 如果域 F F F的特征为 0 0 0,那么
    V 1 ∪ V 2 ∪ ⋯ ∪ V s ≠ V . V_1\cup V_2\cup\cdots\cup V_{s}\ne V. V1V2Vs=V.

利用数学归纳法及反证法.

s = 1 s=1 s=1​时,显然有 V 1 ≠ V V_1\ne V V1=V成立;

s − 1 s-1 s1时命题为真, 即
V 1 ∪ V 2 ∪ ⋯ ∪ V s − 1 ≠ V , V_1\cup V_2\cup\cdots\cup V_{s-1}\ne V, V1V2Vs1=V,
下面讨论 s s s的情况:

根据上述假设, V V V中存在 α ∉ V 1 ∪ V 2 ∪ ⋯ ∪ V s − 1 \alpha\not\in V_1\cup V_2\cup\cdots\cup V_{s-1} αV1V2Vs1, 若 α ∉ V s \alpha\not\in V_s αVs,命题成立.

α ∈ V s \alpha\in V_s αVs, 因为 V s ≠ V V_s\ne V Vs=V, 所以 ∃ β ∉ V s \exist\beta\not\in V_s βVs, 若 β ∉ V 1 ∪ V 2 ∪ ⋯ ∪ V s − 1 \beta\not\in V_1\cup V_2\cup\cdots\cup V_{s-1} βV1V2Vs1, 则
β ∉ V 1 ∪ V 2 ∪ ⋯ ∪ V s − 1 ∪ V s , \beta\not\in V_1\cup V_2\cup\cdots\cup V_{s-1}\cup V_s, βV1V2Vs1Vs,
命题成立, 下面设 β ∈ V 1 ∪ V 2 ∪ ⋯ ∪ V s − 1 \beta\in V_1\cup V_2\cup\cdots\cup V_{s-1} βV1V2Vs1.

由上述讨论知 α , β \alpha,\beta α,β不能同时属于 V i , i = 1 , 2 , . . . , s − 1 V_i,i=1,2,...,s-1 Vi,i=1,2,...,s1, ∀ k i \forall k_i ki, 考虑 α + k i β \alpha+k_i\beta α+kiβ, 若 α + k i β ∈ V i \alpha+k_i\beta\in V_i α+kiβVi, 则对其他 k ≠ k i k\ne k_i k=ki,有 α + k β ∉ V i \alpha+k\beta\not\in V_i α+kβVi, 不然, 可以得出 α ,   β ∈ V \alpha,\,\beta\in V α,βV, 矛盾.

于是对于任一 V i V_i Vi​, 最多只有一个 k i k_i ki​, 使得 α + k i β ∈ V i \alpha+k_i\beta\in V_i α+kiβVi, 取 k ∈ F k\in F kF使 k ≠ k 1 , k 2 , . . . , k s k\ne k_1,k_2,...,k_s k=k1,k2,...,ks, 则 α + k β ∉ V i , i = 1 , 2 , . . . , s \alpha+k\beta\not\in V_i,i=1,2,...,s α+kβVi,i=1,2,...,s​. 证毕.

关于这个例题的证明, 更详细的步骤可参考丘维声高等代数创新教材下,192页. 本文中参考了北大版高等代数的习题解答.

主要参考

  1. 《近世代数》丘维声, 2015.
  2. 《代数学基础(下)》张英伯,王恺顺, 2013.
  3. 《高等代数》(北大第四版)王萼芳,石生明.
  4. 《高等代数创新教材(下)》丘维声.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值