机器学习-白板推导系列笔记(二十一)-RBM

本文详细介绍了受限玻尔兹曼机(RBM)的背景、模型表示和推断。RBM是一种特殊的马尔科夫随机场,采用玻尔兹曼分布。文章通过因子分解解释了玻尔兹曼机的概率分布,并阐述了RBM如何简化Boltzmann机的推断问题,以及与其他概率图模型如Naive Bayes、GMM和CRF的区别。同时,文章还探讨了RBM的后验概率计算和边缘概率的推导过程。
摘要由CSDN通过智能技术生成

此文章主要是结合哔站shuhuai008大佬的白板推导视频:受限玻尔兹曼机_155min

全部笔记的汇总贴:机器学习-白板推导系列笔记

玻尔兹曼机介绍:白板推导系列笔记(二十八)-玻尔兹曼机

一、背景介绍

RBM(Restricted Boltzmann Machine)

(一)玻尔兹曼机

玻尔兹曼机(Boltzmann Machine)可以说它就是一个马尔科夫随机场(Markov Random Field),简单来说就是一个无向图模型,是一种随机神经网络,借鉴了模拟退火思想,因为使用了玻尔兹曼分布作为激活函数,所以称为玻尔兹曼机

如下图所示,将无向图中的节点分为两类,阴影的节点为Observed Variable(用 v v v表示),另一类为Hidden Variable(用 h h h表示)
在这里插入图片描述

(二)因子分解

既然说玻尔兹曼机是一种特殊的马尔科夫随机场,我们首先回顾一下马尔科夫随机场的因子分解。

马尔科夫随机场的因子分解是基于最大团的,其中:

C i : 最 大 团 , ψ i ( x c i ) : 势 函 数 ( p o t e n t i a l    f u n c t i o n ) Z : 归 一 化 因 子 ( 配 分 函 数 p a r t i t i o n    f u n c t i o n ) C_i:最大团,\psi_i(x_{ci}):势函数(potential\;function) Z:归一化因子(配分函数partition\;function) Ci:ψi(xci):potentialfunctionZ:partitionfunction
P ( x ) = 1 Z ∏ i = 1 K ψ i ( x c i ) P(x)=\frac1Z\prod^K_{i=1}\psi_i(x_{ci}) P(x)=Z1i=1Kψi(xci) S . t . : ψ i 严 格 大 于 0 Z = ∑ x ∏ i = 1 K ψ i ( x c i ) = ∑ x 1 ∑ x 2 ⋯ ∑ x p ∏ i = 1 K ψ i ( x c i ) S.t.:\psi_i严格大于0\\Z=\sum_x\prod^K_{i=1}\psi_i(x_{ci})=\sum_{x_1}\sum_{x_2}\cdots\sum_{x_p}\prod^K_{i=1}\psi_i(x_{ci}) S.t.:ψi0Z=xi=1Kψi(xci)=x1x2xpi=1Kψi(xci)
因 为 ψ i 严 格 大 于 0 , 所 以 我 们 取 ψ i ( x c i ) = exp ⁡ { − E ( x c i ) } , 其 中 E 为 能 量 函 数 ( E n e r g y    F u n c t i o n ) 因为\psi_i严格大于0,所以我们取\psi_i(x_{ci})=\exp\{-E(x_{ci})\},其中E为能量函数(Energy\;Function) ψi0ψi(xci)=exp{ E(xci)}EEnergyFunction
所以, P ( x ) = 1 Z ∏ i = 1 K ψ i ( x c i ) = 1 Z exp ⁡ { − ∑ i = 1 K E ( x c i ) } ⏟ 指 数 族 分 布 P(x)=\frac1Z\prod^K_{i=1}\psi_i(x_{ci})=\underset{指数族分布}{\underbrace{\frac1Z\exp\{-\sum^K_{i=1}E(x_{ci})\}}} P(x)=Z1i=1Kψi(xci)= Z1exp{ i=1KE(xci)}

所以,我们将最大团结合到 x x x中去,可以得到, P ( x ) = 1 Z exp ⁡ { − E ( x ) } P(x)=\frac1Z\exp\{-E(x_{})\} P(x)=Z1exp{ E(x)}
这就是玻尔兹曼分布(Boltzmann Distribution)或者吉布斯分布(Gibbs Distribution)

(三)玻尔兹曼分布

这是一个统计物理学的概念,是一个物理系统,具体可以看看视频的讲解,这篇文章也可以看看:玻尔兹曼机

二、模型表示

(一)RBM的模型推导

对于 x x x,我们可以令 x = ( x 1 , x 2 , ⋯   , x p ) T x=(x_1,x_2,\cdots,x_p)^T x=(x1,x2,,xp)T,也可以将 x x x分为隐变量和观测变量两部分,即 x = ( h v ) x=\left(\begin{matrix} h\\v\end{matrix}\right ) x=(hv),其中,

h = ( h 1 , h 2 , ⋯   , h m ) T v = ( v 1 , v 2 , ⋯   , v p ) T m + n = p h=(h_1,h_2,\cdots,h_m)^T\\v=(v_1,v_2,\cdots,v_p)^T\\m+n=p h=(h1,h2,,hm)Tv=(v1,v2,,vp)Tm+n=p

在这里插入图片描述
Boltzmann machine的问题:Inference。精确推断几乎不可能,近似推断计算量过大。因此需要对这个模型进行简化,也就引出了受限玻尔兹曼机(Restricted Boltzmann Machine),即只在 h , v h,v h,v之间有连接, h , v h,v h,v内部无连接。
在这里插入图片描述

所以, P ( x ) = 1 Z exp ⁡ { − E ( x ) } P(x)=\frac1Z\exp\{-E(x_{})\} P(x)=Z1exp{ E(x)}可以化为:

P ( v , h ) = 1 Z exp ⁡ { − E ( v , h ) } P(v,h)=\frac1Z\exp\{-E(v,h)\} P(v,h)=Z1exp{ E(v,h)}

我们假设 E ( v , h ) = − ( h T w v + α T v + β T h ) E(v,h)=-(h^Twv+\alpha^T v+\beta^T h) E(v,h)=(hTwv+αTv+βTh),所以,

P ( v , h ) = 1 Z exp ⁡ { h T w v + α T v + β T h } = 1 Z exp ⁡ { h T w v } ⋅ exp ⁡ { α T v } ⋅ exp ⁡ { β T h } P(v,h)=\frac1Z\exp\{h^Twv+\alpha^T v+\beta^T h\}\\=\frac1Z\exp\{h^Twv\}\cdot\exp\{\alpha^T v\}\cdot\exp\{\beta^T h\} P(v,h)=Z1exp{ hTwv+αTv+βTh}=Z1exp{ hTwv}exp{ αTv}exp{ βTh}

可以参考白板推导系列笔记(九)-概率图模型中的因子图(factor graph view),可以发现上式中的每一项都对应一个因子。
在这里插入图片描述
所以,RBM的pdf为:

P ( v , h ) = 1 Z exp ⁡ ( h T w v ) ⋅ exp ⁡ ( α T v ) ⋅ exp ⁡ ( β T h ) = 1 Z ∏ i = 1 m ∏ j = 1 n exp ⁡ ( h i w i j v j ) ⏟ e d g e ∏ j = 1 n exp ⁡ ( α j v j ) ⏟ n o d e    v ∏ i = 1 m exp ⁡ ( β i h i ) ⏟ n o d e    h ⏟ f a c t o r 其 中 , w , α , β 均 为 参 数 P(v,h)=\frac1Z\exp(h^Twv)\cdot\exp(\alpha^T v)\cdot\exp(\beta^T h)\\=\frac1Z\underset{factor}{\underbrace{\underset{edge}{\underbrace{\prod^m_{i=1}\prod^n_{j=1}\exp(h_iw_{ij}v_j)}}\underset{node\;v}{\underbrace{\prod^n_{j=1}\exp(\alpha_jv_j)}}\underset{node\;h}{\underbrace{\prod^m_{i=1}\exp(\beta_ih_i)}}}}\\其中,w,\alpha,\beta均为参数 P(v,h)=Z1exp(hTwv)exp(αTv)exp(βTh)=Z

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值