人工智能不是一根魔杖——它有内在的问题,很难解决,而且可能很危险
到目前为止,我们都听说过很多关于人工智能(AI)的事情。你可能已经使用过无数可用的人工智能工具。对一些人来说,人工智能就像一根预测未来的魔杖。
但人工智能并不完美。新西兰奥特罗阿的一个超市用餐计划者给顾客提供了有毒的食谱,纽约市的一个聊天机器人建议人们违法,谷歌的人工智能概述告诉人们吃石头。
AI工具的核心是解决特定问题的特定系统。对于任何人工智能系统,我们都应该将我们的期望与它的能力相匹配——其中许多都归结于人工智能是如何构建的。
让我们来探讨一下人工智能系统的一些固有缺陷。
现实世界中的麻烦
所有人工智能系统的一个固有问题是,它们在现实环境中并不是100%准确。例如,预测性人工智能系统将使用过去的数据点进行训练。
如果人工智能遇到了新的东西——与训练数据中的任何东西都不相似——它很可能无法做出正确的决定。
举个假设的例子,让我们以一架装备了人工智能自动驾驶系统的军用飞机为例。该系统将通过其训练“知识库”发挥作用。但人工智能并不是一根魔杖,它只是数学计算。对手可能会制造飞机人工智能无法“看到”的障碍,因为它们不在训练数据中,从而导致潜在的灾难性后果。
不幸的是,对于这个问题,除了尝试训练人工智能以应对我们所知道的所有可能的情况外,我们无能为力。这有时是一项无法完成的任务。
训练数据中的偏差
你可能听说过人工智能做出有偏见的决定。通常,当我们有不平衡的数据时,偏差就会发生。简单来说,这意味着在训练AI系统时,我们给它展示了太多一种结果的例子,而很少展示另一种结果的例子。
让我们以人工智能系统为例,该系统经过训练,可以预测特定个体犯罪的可能性。如果用于训练系统的犯罪数据大部分来自A组(比如某个特定种族),而很少来自B组,系统就不会平等地了解这两个组。
因此,它对a组的预测将使这些人看起来比b组的人更有可能犯罪。如果不加批判地使用该系统,这种偏见的存在可能会产生严重的道德后果。
值得庆幸的是,开发人员可以通过“平衡”数据集来解决这个问题。这可能涉及不同的方法,包括使用合成数据——计算机生成的、预先标记的数据,用于测试和训练内置检查以防止偏见的人工智能。
容易过时的
人工智能的另一个问题是,当它被“离线”训练时,它可能无法跟上它所要解决的问题的动态。
一个简单的例子是一个人工智能系统,用于预测城市的每日温度。它的训练数据包含了这个位置所有过去的温度数据信息。
在人工智能完成训练并部署之后,假设一个严重的气候事件扰乱了通常的天气动态。由于进行预测的人工智能系统是根据不包括这种中断的数据进行训练的,因此其预测将变得越来越不准确。
解决这个问题的方法是“在线”训练人工智能,这意味着它会定期显示最新的温度数据,同时用于预测温度。
这听起来像是一个很好的解决方案,但是在线培训存在一些风险。我们可以让人工智能系统使用最新的数据进行自我训练,但它可能会失去控制。
从根本上说,这可能是因为混沌理论,简单来说,这意味着大多数人工智能系统对初始条件很敏感。当我们不知道系统会遇到什么数据时,我们就不知道如何调整初始条件来控制未来潜在的不稳定性。
当数据不对的时候
有时候,训练数据就是不符合目的。例如,它可能不具备人工智能系统执行我们训练它做的任何任务所需的素质。
举一个非常简单的例子,想象一个人工智能工具来识别“高”和“矮”的人。在训练数据中,一个170cm的人应该被标记为高还是矮?如果是高个子,当遇到一个169.5厘米的人时,系统会返回什么?(也许最好的解决方案是添加一个“中等”标签。)
上述问题似乎微不足道,但如果人工智能系统涉及医疗诊断,那么数据标签或糟糕的数据集问题可能会产生问题。
解决这个问题并不容易,因为确定相关的信息片段需要大量的知识和经验。在数据收集过程中引入主题专家可能是一个很好的解决方案,因为它可以指导开发人员从什么类型的数据开始。
作为人工智能和技术的(未来)用户,我们所有人都必须意识到这些问题,以扩大我们对人工智能及其对我们生活不同方面的预测结果的看法。