线性代数(2)

张成空间
行向量张成空间的秩与其行向量本身的秩是相同的,即r(A)=n,张成空间的集合为 R r ( a ) R^{r(a)} Rr(a).
如果行向量{ A 1 , A 2 , . . , A n A_1,A_2,..,A_n A1,A2,..,An}线性相关,所以矩阵A不是行满秩的。
在乘法列观点中,张成空间的值域列空间。
在列向量矩阵函数 A x = y Ax=y Ax=y中, y y y是列向量的线性组合。
A x = y Ax=y Ax=y的四要素为:

自然定义域映射法则值域到达域
R n R^n RnA c o l s p ( A ) colsp(A) colsp(A) R m R^m Rm

假设A为 m × n m×n m×n的矩阵,则列向量矩阵函数 A x = y Ax=y Ax=y的自然定义域为 R n R^n Rn,自然定义域的任意向量 x x x可以由 R n R^n Rn的自然基{ e 1 , e 2 . . . . . . e n e_1,e_2......e_n e1,e2......en}:
x = x 1 e 1 + x 2 e 2 + . . . + x n e n , x 1 , 2 , . . . , n ∈ R x=x_1e_1+x_2e_2+...+x_ne_n,x_{1,2,...,n} ∈R x=x1e1+x2e2+...+xnen,x1,2,...,nR
假设A的列向量为 c 1 , c 2 , . . . , c n c_1,c_2,...,c_n c1,c2,...,cn:
A = ( c 1 , c 2 , . . . , c 3 ) A = (c_1,c_2,...,c_3) A=(c1,c2,...,c3)
根据矩阵乘法观点可知,列向量矩阵函数 A x = y Ax=y Ax=y:
y = x 1 c 1 + x 2 c 2 + . . . + x n c n , x 1 , 2... , n y=x_1c_1+x_2c_2+...+x_nc_n,x_{1,2...,n} y=x1c1+x2c2+...+xncn,x1,2...,n
这也就说明,值域 y y y是列向量{ c 1 , c 2 , . . . , c n c_1,c_2,...,c_n c1,c2,...,cn}的张成空间,即值域为 列空间

在自然定义域下,列向量矩阵函数的值域为列空间
矩阵函数
对于矩阵函数而言,当定义域为向量空间时,其值域也为向量空间:
且 定义域的维度 >= 值域的维度
用列向量矩阵函数 A x = y Ax=y Ax=y来证明,
首先证明,“当定义域为向量空间时,其值域也是向量空间”。假设定义域X为向量空间,其基{ a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an}张成,那么定义域中的任意向量 x x x可以表示为:
x = x 1 a 1 + x 2 a 2 + . . . + x n a n x=x_1a_1+x_2a_2+...+x_na_n x=x1a1+x2a2+...+xnan, x 1 , 2 , . . , n ∈ R x_{1,2,..,n}\in R x1,2,..,nR
因为矩阵函数 A x = y Ax=y Ax=y是线性函数,所以有:
y = A ( x 1 a 1 + x 2 a 2 + . . . + x n a n ) y=A(x_1a_1+x_2a_2+...+x_na_n) y=A(x1a1+x2a2+...+xnan)
= x 1 A ( a 1 ) + x 2 A ( a 2 ) + . . . + x n A ( a n ) =x_1A(a_1)+x_2A(a_2)+...+x_nA(a_n) =x1A(a1)+x2A(a2)+...+xnA(an)
所以值域为向量组{ A a 1 , A a 2 , . . . , A a n Aa_1,Aa_2,...,Aa_n Aa1,Aa2,...,Aan}的张成空间,也为向量空间。
(2)再证明,“定义域的维度 ⩾ \geqslant 值域的维度”。已知定义域是由基{ a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an}的张成空间,所以定义域的维度为 n n n.
在证明了值域的向量组{ A a 1 , A a 2 , . . . , A a n Aa_1,Aa_2,...,Aa_n Aa1,Aa2,...,Aan}的张成空间。所以该向量组线性无关时,值域的维度为n;当该向量组线性相关时,值域的维度小于n。
因此 定义域的维度 ⩾ \geqslant 值域的维度
A u − A v = 0 Au-Av=0 AuAv=0,如果两个向量的函数值相同,因为定义域维度与值域维度相同,因此向量组{ A a 1 , A a 2 , . . . , A a n Aa_1,Aa_2,...,Aa_n Aa1,Aa2,...,Aan}线性无关, u = v u=v u=v,两个函数的值相同,那么这两个向量就是一个向量。所以A是单射。
(3)因为矩阵函数的定义域维度 ⩾ \geqslant 值域维度,所以除了"定义域维度=值域维度",剩下的情况就是"定义域维度<值域维度"。因为已经证明了单射的充要条件:
矩阵函数是单射 ⟺ \Longleftrightarrow 定义域的维度=值域的维度
所以"定义域的维度>值域维度"自然就是非单射。
(单射就是一对一,非单射就是大范围逼近小范围)

满秩与单射的概念

满秩就是秩的大小和行或者列相同,满秩和单射的证明,类似于平移的证明,单射不意味着元素的空间域是相同的

延伸:证明方程唯一解的问题

(1) 需要证明系数矩阵是满秩矩阵,
(2)证明目标证明在值域中,根据非单射的定义。值域的每一个值对应到定义域都有无数的解与之对应。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值