线性代数的学习和整理13: 定义域,值域,到达域 和单射,满射,双射,反函数,逆矩阵

本文详细解释了函数在初等数学和高等数学中的概念,包括函数的定义、定义域、值域、映射关系以及单射、满射和双射的区别。同时提到函数与反函数、矩阵和逆矩阵的关系,强调了双射与满秩矩阵的条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 函数与 向量/矩阵

2 初等数学的函数

2.1 函数

2.2 函数的定义:定义域  →映射→  值域

3  高等数学里的函数:定义域和陪域/到达域(非值域)的映射关系

3.1 函数

3.2 单射,满射,双射等都是针对定义域 和 陪域的

3.3 易错地方:值域较小且是被决定的

3.4 单射,满射,双射

4 函数和反函数 → 矩阵和逆矩阵

4.1 函数和反函数

4.2 矩阵和逆矩阵 (待完善)


1 函数与 向量/矩阵

下面两者形式类似,本质也类似

  • 函数的:  ax=y    ,常规函数里,a,x,y 一般都是单个数
  • 矩阵:     AX=Y  , 矩阵乘法,这里 A,x,y 一般都是向量/矩阵
  • 线性代数,就是处理 数组和矩阵(数组的数组)的学科

2 初等数学的函数

2.1 函数

形如  ax=y=f(x)的就是函数

  • 自变量 input:x ,原像
  • 因变量 output:y=f(x) ,像
  • 函数/变化规则/映射法则 function :f
  • 定义域domain: 自变量x的取值范围就是定义域,集合x
  • 值域 range:      因变量f(x)=y 的取值范围就是值域, 所有x的像的集合?

2.2 函数的定义:定义域  →映射→  值域

从映射的角度来看,定义域,值域

  • 函数定义域里的每个值x,必须有且只有一个值y与之对应
  1. 每个x不能是0个y对应
  2. 每个x都必须对应1个y
  3. 每个x不能对应多个y
  • 函数值域里的每个值y,必须有一个定义域的x与之对应
  1. 每个y都有1个x对应
  2. 有的y可能都多个x对应到它

如果从图形上来说

  • 函数f(x) 是从定义域 → 值域
  • 下面定义域里打叉×的点都是错的
  • 下面值域里打叉×的点都是错的

3  高等数学里的函数:定义域和陪域/到达域(非值域)的映射关系

3.1 函数

形如  ax=y=f(x)的就是函数

  • 自变量 input:x ,原像
  • 因变量 output:y=f(x) ,像
  • 函数/变化规则/映射法则 function :f
  • 定义域domain: 自变量x的取值范围就是定义域,集合x
  • 值域 range:      因变量f(x)=y 的取值范围就是值域, 所有x的像的集合?
  • 陪域/ 到达域codomain :因变量f(x)=y 可能的范围,集合y

3.2 单射,满射,双射等都是针对定义域 和 陪域的

  • 理清概念
  • 这个只针对 定义域 →  陪域/到达域
  • 不针对       定义域 →  值域
  • 就这么简单粗暴
  • 前面的函数的映射定义,可能算初等数学的把
  • 这个加入了 陪域/到达域的映射定义,可能算高等函数的把

3.3 易错地方:值域较小且是被决定的

  • 定义域,值域取值范围都选 R 或者 R+
  • 而值域,一般不存在选范围的问题,因为是同感 y=f(x) 一一映射决定的,一般肯定都是R的一个较小的子集!!

比如提前一个例题

  • 为什么y=x^2 不是满射,因为都是针对 定义域 R→  陪域/到达域R,而值域是R+,因此不是满射

3.4 单射,满射,双射

  • 非函数:  定义域里有的x对应了多个y,这种情况还是非函数
  • 单射:     定义域里的每个x 都有唯一的y对应。(但是有的y可能没有x对应)
  • 非单射: 定义域里的每个x 都有y对应,但是可能对应相同的y
  • 满射:     到达域里(非值域)的每个y 都有x对应 (但是有的y可能对应的2个x)
  • 非满射: 到达域里(非值域)不是每个y 都有x对应,有些y值没有x映射
  • 特例
  • 双射:    定义域中的x 和值域中y 分别一一对应
  • 双射的意义,只有满秩的双射矩阵,一定可逆矩阵(见下面)
  1. 单射非满射:   普通单射,只单射,不满射
  2. 单射&满射:    双射
  3. 非单射&满射:
  4. 非单射&非满射:

4 函数和反函数 → 矩阵和逆矩阵

双射的意义,只有满秩的双射矩阵,一定可逆矩阵(见下面)

  • 普通函数,直接让y 映射到x,很可能就不是函数
  • 下面图可以看到,直接让y 映射到x,很可能1个y会映射多个x,这样就不是函数

4.1 函数和反函数

如果一个函数 y=f(x)=ax 反过来 x=f(y)

  • 如果x和y调换,如果不是满射,反过来就不是单射,函数就不存在反函数
  • 所以 函数必须是 双射,这个函数才会有反函数。
  • 双射的函数,一定有反函数,见下图

4.2 矩阵和逆矩阵 (待完善)

  • 同理,矩阵必须是满秩的,才会有逆矩阵
  • 详细的需要写

<think>嗯,用户想了解反函数是什么。首先,我需要回忆一下反函数的定义,确保自己理解正确。反函数应该是一个函数的运算,也就是说,如果原函数f把x映到y,那么反函数f⁻¹就把y映回x。不过得确认定义域值域是否互换,以及一一对应的条件。 接下来,用户可能想知道为什么反函数存在条件。比如,函数必须是双射的,即一一对应的,这样每个y都有唯一的x对应。可能需要举例子,比如线性函数y=2x+3,它的反函数是x=(y-3)/2,但更复杂的函数可能需要更严格的条件。 还要考虑图像的关系。反函数原函数的图像关于y=x对称,这个点很重要,可以通过画图来直观展示。比如指数函数对数函数就是互为反函数的例子,它们的图像确实关于y=x对称。 另外,用户可能想知道如何求反函数的步骤。通常步骤是:设y=f(x),然后解这个方程得到x关于y的表达式,最后交换xy的位置,得到y=f⁻¹(x)。需要确保每一步都正确,尤其是在解方程的时候可能会有多解的情况,这时候需要根据原函数的定义域来确定正确的解。 还有可能需要提到常见的反函数例子,比如幂函数根函数,指数函数对数函数,三角函数反三角函数等。不过反三角函数需要注意定义域的限制,因为三角函数是周期函数,不是一一对应的,所以需要限制定义域才能有反函数。 需要检查是否有常见的误区,比如不是所有函数都有反函数,必须是双射的。如果函数不是一一对应的,可能需要限制定义域,比如二次函数通常需要限制到一半的抛物线才能有反函数。 可能还需要解释反函数的符号,f⁻¹(x),并强调这倒数1/f(x)不同,避免混淆。 最后,要确保语言通俗易懂,结构清晰,分点说明定义、存在条件、求法、例子图像特性等。同时,按照用户的要求,数学表达式用$...$或$$...$$格式,中文回答,结构清晰。</think>反函数是数学中一种重要的函数关系,下面通过逐步解释帮助你理解: **1. 定义** - 若函数$f$在其定义域$D$值域$R$之间建立**一一对应**关系(即每个$x$对应唯一的$y$,每个$y$也对应唯一的$x$),则存在反函数$f^{-1}$,满足: $$f^{-1}(f(x)) = x \quad \text{且} \quad f(f^{-1}(y)) = y$$ - **变量互换**:若原函数为$y = f(x)$,则反函数可表示为$x = f^{-1}(y)$(通常改写为$y = f^{-1}(x)$) **2. 存在条件** - **严格单调性**:函数在定义域内必须严格递增或递减(如$f(x)=e^x$严格递增) - **双射性**:必须满足单射(不重复输出)满射(覆盖整个值域) **3. 求解步骤**(以$y = 2x + 3$为例) 1. 写出方程:$y = 2x + 3$ 2. 解$x$关于$y$的表达式: $$x = \frac{y - 3}{2}$$ 3. 变量互换得到反函数: $$f^{-1}(x) = \frac{x - 3}{2}$$ **4. 图像特征** - **对称性**:反函数图像与原函数图像关于直线$y = x$对称 - 例如: - 指数函数$y = e^x$与对数函数$y = \ln x$ - 幂函数$y = x^3$与其反函数$y = \sqrt[3]{x}$ **5. 重要注意事项** - **非全函数反函数**:如$f(x)=x^2$需限定定义域(如$x \geq 0$)才有反函数$f^{-1}(x)=\sqrt{x}$ - **三角函数反函数**:必须限制定义域(如$\sin x$在$[-\pi/2, \pi/2]$的反函数为$\arcsin x$) - **符号区分**:$f^{-1}(x) \neq [f(x)]^{-1} = \frac{1}{f(x)}$ **应用实例**:在密码学中,加密函数$E$与解密函数$D$常构成反函数关系,即$D(E(x)) = x$。理解反函数关系有助于分析这种加密系统的数学基础。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值