简单时态网络STN的检验方法及增量式一致性检验过程

本文详细介绍了在网络图中寻找最短路径的四种算法:Floyd-Warshall、Bellman-Ford、Dijkstra和Johnson,探讨了它们的时间复杂度、空间复杂度以及适用场景,特别关注了增量式STN检验算法的效率提升。
摘要由CSDN通过智能技术生成

网络图中的最短路径算法

在本文中,我们将介绍几种在网络图中寻找最短路径的算法:Floyd-Warshall算法、Bellman-Ford算法、Dijkstra算法和Johnson算法。

Floyd-Warshall算法

Floyd-Warshall算法通过不断的松弛节点来找到节点间的最短路径。此算法的时间复杂度为 O ( V 3 ) O(V^3) O(V3),其中V代表图中顶点的数量。这是由于算法需要三层嵌套循环来迭代更新所有顶点对之间的最短路径。其空间复杂度为 O ( V 2 ) O(V^2) O(V2),需要存储一个大小为VxV的距离矩阵来保存所有顶点对之间的最短路径长度。每次检验一致性的时间复杂度为 O ( V ) O(V) O(V)

在这里插入图片描述

Bellman-Ford算法

Bellman-Ford算法的核心思想是计算从单个源顶点到图中所有其他顶点的最短路径。其时间复杂度为 O ( V ∗ E ) O(V*E) O(VE),其中V是图中顶点的数量,E是图中边的数量。算法进行V-1次迭代,每次迭代都会检查所有边。空间复杂度为 O ( V ) O(V) O(V),因为算法只需要存储从源顶点到所有其他顶点的最短路径长度。每次检验一致性的时间复杂度为 O ( E ) O(E) O(E)

![外链图片转存失在这里插入图片描述

Dijkstra算法

迪杰斯特拉算法的核心思想是从源节点开始,不断添加和更新到相连节点的距离。这个过程通过维护一个优先队列(可用二叉堆或斐波那契堆实现),每次从优先队列中取出一个节点,搜索该节点的最近节点,并更新从源节点到它的距离,直到优先队列为空。其算法复杂度为 O ( ( E + V ) log ⁡ V ) O((E+V)\log V) O((E+V)logV)(使用二叉堆)和 O ( E + V log ⁡ V ) O(E+V\log V) O(E+VlogV)(使用斐波那契堆)。迪杰斯特拉算法无法检测负权边,也无法检测负环。

在这里插入图片描述

Johnson算法

约翰逊算法能在含有负权边的图中找到所有对最短路径。它通过结合使用Bellman-Ford算法和Dijkstra算法,转化问题来实现目标。约翰逊算法首先使用Bellman-Ford算法计算到其他每个节点的最短路径,并检验是否存在负环。若不存在负环,则将图中的边重新定义为正权重,并采用Dijkstra算法来计算每个节点到所有节点的最短路径。

在这里插入图片描述

算法性能对比

在这里插入图片描述

在选择最短路径算法时,需要考虑几个关键因素:图的稠密度、是否存在负权边或负环、以及是否需要计算单源或所有节点间的最短路径。每种算法都有其特定的应用场景:

  • Floyd-Warshall算法是理想的选择当我们需要在稠密图中计算所有节点间的最短路径时。
  • Bellman-Ford算法适用于含有负权边的图中,从单一源点到其他所有点的最短路径计算。
  • Dijkstra算法在无负权边的图中从单一源点到其他所有点的最短路径计算中非常高效。
  • Johnson算法则是在需要处理较大规模稀疏图并且图中含有负权边时的理想选择。

因此,根据你的具体需求和图的特点选择适合的算法是至关重要的。

增量式的STN检验

一个简单时态网络图中通常包括负权边,需计算所有节点之间的最短路径,并且需要时常检验图中是否存在负环。通过上一节的整理,我们知道相应的STN一致性检验算法包括Floyd-Warshall算法(时间复杂度 O ( n 3 ) O(n^3) O(n3))和Johnson’s算法(时间复杂度 O ( m n + n 2 log ⁡ n ) O(mn+n^2\log n) O(mn+n2logn))。然而,在不断添加新节点和新约束(如 X − Y ≤ δ X-Y\leq \delta XYδ)的情景下,如何高效地更新STN的距离矩阵?

  • 从零开始重新构建距离矩阵:Johnson’s算法 O ( m n + n 2 log ⁡ n ) O(mn+n^2\log n) O(mn+n2logn)
  • 仅计算节点 X X X Y Y Y到其他节点的最短距离:用Floyd-Warshall算法,对于任意 U , V ∈ T U,V\in T U,VT D ( U , V ) = min ⁡ { D ( U , V ) , D ( U , X ) + δ + D ( Y , V ) } D(U,V) = \min \{D(U,V),D(U,X)+\delta+D(Y,V)\} D(U,V)=min{D(U,V),D(U,X)+δ+D(Y,V)},时间复杂度为 O ( n 2 ) O(n^2) O(n2)

尽管这两种算法在实现上都比较简单,但在效率上都不尽如意,尤其是对于规划和调度中大量新增的时态约束,会导致一致性的检验花费大量时间。接下来介绍一种增量式的STN检验算法,该算法检验一条新增约束的时间复杂度为 O ( m + n l o g n ) O(m+nlogn) O(m+nlogn)(即运行一次Dijkstra算法的时间复杂度)。删除一条约束或减弱一个约束后,只需要常量的时间,因为原解在修改后STN上依然适用。

现介绍一种增量式的STN检验算法:原STN S = < T , C > S=<T,C> S=<T,C>,用Johnson’s算法可求得 π ( w ) \pi(w) π(w)是原STN从源节点到目标节点 w w w的解(最短距离解)。现对原STN S S S添加新的约束 C ′ = C ∪ { Y − X ≤ δ } C'=C\cup \{Y-X \leq \delta\} C=C{YXδ} D D D为原STN的距离矩阵,则新解 π ′ \pi' π可定义如下:
π ′ ( w ) = min ⁡ ( π ( w ) , π ( X ) + δ + D ( Y , w ) ) \pi'(w)=\min (\pi(w),\pi(X)+\delta+D(Y,w)) π(w)=min(π(w),π(X)+δ+D(Y,w))
上式计算了从源节点到 w w w节点的最短距离,可分为两个部分理解:不考虑新边 X → Y X\rightarrow Y XY的情况(原来的长度)和考虑新边的情况(从源节点到 X X X,加上新边 X → Y X \rightarrow Y XY,在从 Y Y Y w w w)。特别地,若 π ′ ( X ) = π ( X ) \pi'(X) = \pi(X) π(X)=π(X),则更新的STN S ′ = < T , C ′ > S'=<T,C'> S=<T,C>是可行的(或一致的)。证明如下:假设从源节点到 X X X的距离发生变化,则有 π ( X ) > π ( X ) + δ + D ( Y , X ) \pi(X) > \pi(X)+\delta+D(Y,X) π(X)>π(X)+δ+D(Y,X),则有 D ( Y , X ) + δ < 0 D(Y,X) +\delta<0 D(Y,X)+δ<0说明新STN中存在负环。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

双层蟹黄堡

如果有帮助,请我喝杯咖啡吧55

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值