OpenCV实例(六)行人检测

本文介绍了OpenCV中的行人检测技术,包括行人检测的基础实现、基本流程、HOG描述符的应用,以及如何通过调整参数如winStride、padding和scale来优化检测效果。文章通过代码实例展示了不同参数设置对检测精度和实时性的影响。
摘要由CSDN通过智能技术生成

作者:Xiou

1.行人检测概述

行人检测是目标检测的一个分支。目标检测的任务是从图像中识别出预定义类型目标,并确定每个目标的位置。用来检测行人的目标检测系统被称为行人检测系统。

行人检测主要用来判断输入图片(或视频)内是否包含行人。若检测到行人,则给出其具体的位置信息。该位置信息是智能视频监控、人体行为分析、智能驾驶、智能机器人等应用的关键基础。由于行人可能处于移动状态,也可能处于静止状态,且外观容易受到体型、姿态、衣着、拍摄角度、遮挡等多种因素的影响,因此行人检测在计算机视觉领域内成为研究热点与难点。

一种比较常用的行人检测方式是统计学习方法,即根据大量样本构建行人检测分类器。提取的特征主要有目标的灰度、边缘、纹理、颜色、梯度等信息。分类器主要包括人工神经网络、SVM、Adaboost及卷积神经网络等。

OpenCV采用的行人检测算法是基于Dalal的论文实现的,我们可以直接调用行人检测器实现行人检测。

2.行人检测基础实现

2.1基本流程

在OpenCV中直接调用行人检测器即可完成行人检测,具体过程如下:

● 调用hog=cv2.HOGDescriptor(),初始化HOG描述符。
● 调用setVMDetector,将SV

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小幽余生不加糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值