Triton入门实践 | 算子性能优化:自动调优的艺术

Triton 以其低门槛开发和抽象的硬件细节处理,成为开发者的优选。

对于渴望参与 Triton 开源社区建设的开发者来说,优化 Triton 算子是一条理想的路径。优化后的 Triton 算子性能有望匹敌甚至超越 PyTorch 的原生实现。

正如古人云:“工欲善其事,必先利其器”,本文将介绍 Triton 算子优化的利器——自动调优(autotune)。

Triton 算子的实现代码

一个简单的 Triton 算子的实现代码通常分为两个部分。

  1. 计算准备阶段:涉及输入张量的预处理(如转换为连续布局张量),计算输出张量的形状并分配内存,以及设置运行参数(如 grid 和 BLOCK_SIZE)。

  2. 核函数调用:在 GPU 上实现计算逻辑。

以下是一个对三维张量 inp(形状为 [M,N,K])计算在第 1 维(N 所在维)上最大值下标的例子,即 argmax 算子。下文将在本例的基础上讲述 autotune 的用法。

def argmax(inp):
    # 第一部分
    dim = 1                       # 本例是 argmax 的一个特化实现,仅能处理 dim=1 的情形
    N = shape[dim]
    M = prod(shape[:dim])
    K = inp.numel() // M // N
    inp = inp.contiguous()        # 将输入转换为连续布局张量,本例中可以简化核函数实现
    shape = list(inp.shape)
    shape[dim] = 1                # 第 dim 维取最大值下标,因此该维度上输出 shape 归一
    out_index = torch.empty(shape, dtype=torch.int64, device=inp.device)  # 分配输出
    grid = lambda meta: (         # 本例 grid 使用二维,通过表达式指定
        triton.cdiv(M, meta["BLOCK_M"]),
        K,
    )
    # 第二部分
    with torch.cuda.device(inp.device):
        argmax_kernel[grid](
            inp,
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值