什么是多模态大模型

Hello!欢迎各位新老朋友来看小弟博客,祝大家事业顺利,财源广进!!

主题:多模态大模型

是什么

  1. 在机器学习领域,”模态”被用来描述不同类型的数据形式,如文本、图像、视频、音频等。
  2. 最开始以 ChatGPT 为代表的大语言模型,都是只支持文本这个单一模态。
  3. 可以同时处理文本、图像、音频等多种形式的数据输入输出的大模型,就是多模态大模型。

特点:端到端

一个模型能同时理解和处理多种模态的数据输入。

1.非端到端的例子:

  1. 在 ChatGPT 上,可以调用 DALL-E 生成图片,但实际流程是 prompt → GPT4模型 → 生成细节提示词→DALL-E模型 → 生成高质量细节图像,只是一个能力串联,并不是一个多模态大模型。
  2. 在豆包或其他一些LLM APP上,支持语音输入→文字和语音输出,实际流程是语音→ASR模型转文字→LLM→文字→tts模型转语音,并不是端到端 语音→LLM→语音。

2.端到端的例子:

  1. GPT4o 的实时语音对话,流程是 语音→ GPT4o模型→语音。延迟低、语气/音色/停顿/语义都能综合理解到。
  2. claude3.5 支持按要求识别图片,流程是 图片+prompt → claude模型→文本。能很好结合 prompt按要求输出对图片的识别。

3.端到端的好处:

  1. 模型能直接从原始的数据中学习不同模态之间的关联和映射关系,发现隐藏在数据中的复杂跨模态模式,可以 scale up达到涌现,没有中间折损,可以做到低延时。

原理:基于大语言模型

1.多模态大模型以大语言模型为基础模型,复用已预训练好的模型理解能力,在上面增加其他模态的能力,对齐多个模态的特征让原大语言模型能理解。GPT4o 就是在 GPT4 基础上增加音频/图片的特征能力,它在文本上的理解能力还是跟 GPT4 差不多。

2.模型通用

### 多模态大模型的定义 多模态大模型是指能够处理和理解多种类型数据(如图像、文本、音频等)的人工智能模型。这些模型旨在捕捉不同类型数据之间的内在关联,从而实现更全面的信息理解和处理能力[^2]。 ### 技术原理 #### 特征表示 为了使计算机能有效处理来自不同源的数据,首要任务是将各种形式的数据转换成可以被机器学习算法使用的特征向量。这一步骤对于确保后续处理的有效性和准确性至关重要[^3]。 #### 融合模型 一旦获得了各个模态下的特征表达之后,则需进一步考虑如何有效地组合它们来构建最终输入给分类器或其他下游任务使用的表征。此过程中常用的方法包括简单拼接以及更加复杂的基于注意力机制或者图结构的方式来进行深层次交互[^4]。 #### 模型训练与评估 在完成上述准备工作后,即进入到了实际的学习阶段——通过对大量标记样本进行监督式训练使得所建立起来的大规模预训练框架具备良好的泛化能力和鲁棒特性;与此同时,在整个开发周期里持续监控各项性能度量标准以指导调参直至达到预期效果为止[^1]。 ```python import torch.nn as nn class MultiModalModel(nn.Module): def __init__(self, text_encoder, image_encoder, fusion_layer): super(MultiModalModel, self).__init__() self.text_encoder = text_encoder self.image_encoder = image_encoder self.fusion_layer = fusion_layer def forward(self, texts, images): encoded_texts = self.text_encoder(texts) encoded_images = self.image_encoder(images) fused_representation = self.fusion_layer(encoded_texts, encoded_images) return fused_representation ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值