在本项目的最后,给大家带来的是本项目的文献综述,重申一下本项目拟题在开题时就被怼过,确实不妥,但是在此依旧沿用此名称。下面是直接引用:
一、研究背景
1.1 人脸检测的应用背景
在生物特征识别技术中,人脸识别是最自然、最直接和最友好的手段。人脸检测和识别在身份认证、电子商务、视频监控、人机交互等领域具有广阔的应用前景。人脸检测和识别已经成为模式识别和人工智能领域中极富挑战性的热点课题之一,对人脸检测和识别的研究具有很高的理论意义和实用价值。
1.2 人眼检测的应用背景
人眼检测是人脸识别、表情识别、眼动分析、虹膜识别等技术的必要步骤,涉及图像处理、计算机视觉以及模式识别等多个学科,并在工业检测、智能机器人、人机交互、公共安全、智能交通以及军事侦察等领域均有广泛的应用。随着相关技术的积累以及硬件技术的日益发展,使得很多相关技术得以推广,越来越多的学者投入到这个领域的研究当中,这一方面的研究势必会得到进一步的发展。
1.3 视线跟踪的应用背景
视线跟踪可以应用到很多领域。人机交互中,基于视线跟踪的字符输入以及辅助绘画功能;在医学上,除了医学诊断和心理研究,行动不便的患者还可以利用视线跟踪技术控制周围的家用电器;在商业中,视线跟踪技术主要是应用在广告评估及网页测试方面,实现了广告和网页的最优化设计;在军事方面,视线跟踪技术可以进行精准的制导。作为人类获取外界信息的重要途径,视线跟踪系统也在智能人机交互中发挥着巨大的潜力,是科学界研究的一大热点。
二、国内外研究现状
2.1 人脸检测方法[2]
(1)基于知识的方法
基于知识的人脸检测技术是将人脸面额器官之间的关系编码准则化的人脸检测技术,该技术是自上向下的,依据人脸面部器官的对称性、灰度差异等知识 ,制定出一系列的准则。当图像中的待测区有符合准则的则被检测为人脸。
(2)基于模板匹配的方法
基于模板的方法可以分为两类:预定模板和变形模板。预定模板方法首先制定出标准的模板,然后计算检测区域和模板的相关,当相关值符合制定的准则就判断检测区域 为人脸;变形模板首先制定出模板参数,然后根据检测区域的数据对参数进行修改直至收敛,以达到检测出人脸部器官位置的目的。由于基于模板的方法比较成熟,因此其实现起来比较简单,但是这个方法对于人脸检测来说,效率并不高。
(3)基于特征不变量的方法
基于特征的方法不仅可以从已有的面部特征进行检测,还可以从他们的几何关系进行人脸检测。它是先利用各种手段寻找人脸的不变特征,然后找到的不变特征来确定待检测区域是否是人脸。面部不变特征主要包括眉毛、眼睛、鼻子、嘴等,一般利用边缘检测器提取,根据提取的特征,建立统计模型来描述特征之间的关系,并确定存在的人脸位置。
(4)基于统计模型的方法
这个方法的模型是从一系列具有代表性脸部表观的训练图像学习而来,再将学习而成的模板用于人脸检测,它不像基于模板的方法,模板是由专家预先定义的。目前很多人脸检测方法都是基于统计模型的方法。
2.2 人眼检测方法
(1)模板匹配法[3]
传统的模板匹配方法一般是从人脸图像库中选取,然后分别用左右眼模板在图像中进行匹配,得到两个相似度最大的点作为定位的眼睛。这种方法由于要对整幅图扫描两次,分别定位左眼和右眼,因此计算量较大,且常常只能定位到一只眼睛。后来的研究者利用眼睛对的相对位置关系,将选取的左眼模板和右眼模板合成,用来检测在图像中匹配后选取多个相似眼睛点,通过计算相似眼睛点之间的两两距离来同时定位眼睛。这在一定程度上克服了传统模板对左眼和右眼比较敏感的缺陷,使定位的准确率显著提高,有效压缩了计算量。
(2)Hough变换法[4]
霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。Hough变化通过识别几何形状精确定位人眼中心。通常,在人脸图像中利用水平积分投影可以确定出眼睛的大致位置,通常在人脸图像中利用水平积分投影确定出眼睛的大致位置。由于眼睛的大小范围已经确定,在单侧眼睛范围内进行Hough变换,就能得到该侧眼睛的虹膜半径和中心点。根据眼睛的相对位置可以确定另一侧眼睛的具体位置,实现人眼精确定位。Hough变换算法思路简单,但是运算量较大,需要鲁棒性较好的边缘检测算法,而且由于它是属于形状检测,所以需要排 除类似于圆形的干扰,在进行霍夫变换前首先要确定出眼睛的大致位置。
(3)灰度投影法[5][6]
灰度投影法是利用眼睛在灰度图像中明显的梯度性确定其位置。双眼灰度图像的水 平方向上的灰度变化次数最多,可以首先计算出图像水平微分图像的积分和,对积分和 进行直方图统计,最大的值就是眼睛的垂直坐标。由于眼睛中间的黑色像素最多,在计 算眼睛的水平坐标时,直接计算灰度图像垂直方向积分和,直方图中会出现两个至高点 和谷点,谷点的坐标就是一侧眼睛的中心水平坐标,同理可得另一侧眼睛中心水平坐标。
(5)对称变换法[7]
考虑离散对称变换法,它不仅具有广义对称变换描述物体对称性大小的特点,而且通过对各点邻域的考察,去除那些处于规则区域外的点,可大大降低计算量,实现眼睛定位的快速算法。离散对称变换以减少计算量为出发点,在计算对称之前加入一个对图像灰度不均匀区域的检测步骤以减少计算量,其次定义一个