暑假第二场积分赛——————大数斐波那契数列

该博客讨论了如何解决一个编程竞赛中的问题,即当斐波那契数列可能包含多达1e+4项,且数值超出long long范围时,如何通过计算溢出值来确定数列中的位置。博主分析了由于数列增长迅速,直接存储所有项不可行,但同一数字溢出值相同,不同数字溢出值相同的概率极小,因此可以通过计算溢出值来找到目标项的位置。
摘要由CSDN通过智能技术生成

题目大意是给定你数列前两项f0=0,f1=1,先给你一个数x,问是第几项?其中可能出现1e+4项

题意分析:题目中说可能出现1e+4项,那么可想而知是无法用数组来正常储存每一项的数字的,因为数列的递增速度很快,在第40项时就已超出long long 的范围,所以这时就需要储存一个数的溢出值,尽管溢出值并不等价于原来的数字,但是对于同一个数字来说,溢出的值相同,而对于不相同的项,溢出值相同的概率十分小,可以忽略不计,所以就得到了这道题的整体思路

代码`

#include<bits/stdc++.h>
using namespace std;

const int maxn=1e+4;
int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值