2021考研数学 高数第五章 定积分与反常积分

1. 背景

前段时间复习完了高数第五章的内容,我参考《复习全书·基础篇》和老师讲课的内容对这一章的知识点进行了整理,形成了这篇笔记,方便在移动设备上进行访问和后续的补充修改。

2. 定积分

2.1. 定积分的定义

  • 定义:

∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int_a^{b} {f(x)} dx = \lim\limits_{\lambda \to 0}{\sum_{i = 1}^n{f(\xi_i)\Delta x_i}} abf(x)dx=λ0limi=1nf(ξi)Δxi

其中 λ = m a x { Δ x i } , i ∈ [ 1 , n ] \lambda = max\{\Delta x_i\}, i\in [1, n] λ=max{Δxi},i[1,n] ξ i \xi_i ξi为在 [ x i − 1 , x i ] [x_{i - 1}, x_i] [xi1,xi]上任取的一点。

  • 利用定积分求极限:

若积分 ∫ 0 1 f ( x ) d x \displaystyle \int_{0}^{1} f(x) dx 01f(x)dx 存在,将 [ 0 , 1 ] [0, 1] [0,1]区间等分,此时 Δ x i = 1 n \Delta x_i = \dfrac{1}{n} Δxi=n1, 取 ξ i = 1 n \xi_i = \dfrac{1}{n} ξi=n1, 由定积分的定义得

∫ 0 1 f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i = lim ⁡ n → ∞ f ( i n ) \int_0^{1} {f(x)} dx = \lim\limits_{\lambda \to 0}{\sum_{i = 1}^n{f(\xi_i)\Delta x_i}} = \lim\limits_{n \to \infty}{f(\frac{i}{n})} 01f(x)dx=λ0limi=1nf(ξi)Δxi=nlimf(ni)

2.2. 定积分的性质

2.3. 积分上限函数

  • 定义:

变上限的积分 ∫ a b f ( x ) d x \displaystyle \int_a^{b} {f(x)} dx abf(x)dx是其上限的函数,常称之为积分上限函数。

  • 定理:

如果 f ( x ) f(x) f(x)在区间 [ a , b ] [a, b] [a,b]上连续,则

( ∫ a x f ( t ) d t ) ′ = f ( x ) ( \int_{a}^{x} f(t) dt )' = f(x) (axf(t)dt)=f(x)

如果$ f(x) 为 为 [a, b] 上 的 连 续 函 数 , 上的连续函数, \varphi_1(x), \varphi_2(x)$为可导函数,则

( ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t ) ′ = f [ φ 2 ( x ) ] ⋅ φ 2 ′ ( x ) − f [ φ 1 ( x ) ] ⋅ φ 1 ′ ( x ) ( \int_{\varphi_1(x)}^{\varphi_2(x)} f(t) dt )' = f[ \varphi_2(x) ] \cdot \varphi_2'(x) - f[ \varphi_1(x) ] \cdot \varphi_1'(x) (φ1(x)φ2(x)f(t)dt)=f[φ2(x)]φ2(x)f[φ1(x)]φ1(x)

2.4. 定积分的计算

2.4.1. 牛顿-莱布尼茨公式

f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续, F ( x ) F(x) F(x) f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上的一个原函数,则有

∫ a b f ( x ) d x = ∫ α β f [ φ ( t ) ] φ ′ ( t ) d t \int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f[\varphi(t)] \varphi'(t) dt abf(x)dx=αβf[φ(t)]φ(t)dt

2.4.2. 换元积分法
2.4.3. 分部积分法

∫ a b u d v = u v ∣ a b − ∫ a b v d u \int_{a}^{b} u dv = uv \Big|_a^b - \int_{a}^{b} v du abudv=uvababvdu

2.4.4. 利用奇偶性和周期性
2.4.5. 利用已有公式

3. 反常积分

3.1. 无穷区间上的反常积分

定义

  1. f ( x ) f(x) f(x) [ a , ∞ ] [a, \infty] [a,] 上的连续函数,如果极限 lim ⁡ t → + ∞ ∫ a t f ( x ) d x \displaystyle\lim\limits_{t \to +\infty} \int_{a}^{t} {f(x)}dx t+limatf(x)dx 存在,则称此极限为函数 f(x)在无穷区间 [ a , ∞ ] [a, \infty] [a,] 上的反常积分,记作 ∫ a + ∞ f ( x ) d x \displaystyle\int_{a}^{+\infty} f(x) dx a+f(x)dx,即

∫ a + ∞ f ( x ) d x = lim ⁡ t → + ∞ ∫ a t f ( x ) d x \int_{a}^{+\infty} f(x) dx = \lim\limits_{t \to +\infty} \int_{a}^{t} {f(x)}dx a+f(x)dx=t+limatf(x)dx

这时也称反常积分 ∫ a + ∞ f ( x ) d x \displaystyle\int_{a}^{+\infty} f(x) dx a+f(x)dx 收敛,如果上述极限不存在,则称反常积分 ∫ a + ∞ f ( x ) d x \displaystyle\int_{a}^{+\infty} f(x) dx a+f(x)dx 发散

  1. f ( x ) f(x) f(x) [ − ∞ , b ] [-\infty, b] [,b] 上的连续函数,则可类似的定义函数 f ( x ) f(x) f(x) 在无穷区间 [ − ∞ , b ] [-\infty, b] [,b] 上的反常积分

∫ − ∞ b f ( x ) d x = lim ⁡ t → − ∞ ∫ a t f ( x ) d x \int_{-\infty}^{b} f(x) dx = \lim\limits_{t \to -\infty} \int_{a}^{t} {f(x)}dx bf(x)dx=tlimatf(x)dx

  1. f ( x ) f(x) f(x) [ − ∞ , + ∞ ] [-\infty, +\infty] [,+] 上的连续函数,如果反常积分

∫ − ∞ 0 f ( x ) d x 和 ∫ 0 + ∞ f ( x ) d x \int_{-\infty}^{0} f(x) dx \text{和} \int_{0}^{+\infty} f(x) dx 0f(x)dx0+f(x)dx

都收敛,则称反常积分 ∫ − ∞ + ∞ f ( x ) d x \int_{-\infty}^{+\infty} f(x) dx +f(x)dx 收敛,且

∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ 0 f ( x ) d x + ∫ 0 + ∞ f ( x ) d x \int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{+\infty} f(x) dx +f(x)dx=0f(x)dx+0+f(x)dx

如果至少有一个发散,则称 ∫ − ∞ + ∞ f ( x ) d x \int_{-\infty}^{+\infty} f(x) dx +f(x)dx 发散


常用结论

∫ a + ∞ 1 x p d x { p > 1 , 发散 p ≤ 1 , 收敛 , ( a > 0 ) \int_{a}^{+\infty} \frac{1}{x^p} dx {\left\{ \begin{aligned} p > 1 & , \text{发散} \\ p \le 1 & , \text{收敛} \\ \end{aligned}\right. }, (a>0) a+xp1dx{p>1p1,发散,收敛,(a>0)

3.2. 无界函数的反常积分

如果函数 f ( x ) f(x) f(x) 在点 a a a 的任一邻域内都无界,那么点 a a a 称为 函数 f ( x ) f(x) f(x) 的瑕点(也称为无界点)。无界函数的反常积分也称为瑕积分

定义

  1. f ( x ) f(x) f(x) ( a , b ] (a, b] (a,b] 上连续,点 a a a 为函数的瑕点。如果极限 lim ⁡ t → a + ∫ t b f ( x ) d x \displaystyle\lim\limits_{t \to a^+} \int_{t}^{b} {f(x)}dx ta+limtbf(x)dx存在,则称此极限为函数 f(x)在无穷区间 [ a , b ] [a, b] [a,b] 上的反常积分,记作 ∫ a b f ( x ) d x \displaystyle\int_{a}^{b} f(x) dx abf(x)dx,即

∫ a b f ( x ) d x = lim ⁡ t → a + ∫ t b f ( x ) d x \int_{a}^{b} f(x) dx = \lim\limits_{t \to a^+} \int_{t}^{b} {f(x)}dx abf(x)dx=ta+limtbf(x)dx

这时也称反常积分 ∫ a + ∞ f ( x ) d x \displaystyle\int_{a}^{+\infty} f(x) dx a+f(x)dx 收敛,如果上述极限不存在,则称反常积分 ∫ a + ∞ f ( x ) d x \displaystyle\int_{a}^{+\infty} f(x) dx a+f(x)dx 发散

  1. f ( x ) f(x) f(x) [ a , b ) [a, b) [a,b) 上连续,点 b b b 为函数 f ( x ) f(x) f(x) 的瑕点。则可类似的定义函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上的反常积分

∫ a b f ( x ) d x = lim ⁡ t → a + ∫ t b f ( x ) d x \int_{a}^{b} f(x) dx = \lim\limits_{t \to a^+} \int_{t}^{b} {f(x)}dx abf(x)dx=ta+limtbf(x)dx

  1. f ( x ) f(x) f(x) [ a , b ) [a, b) [a,b) 上除 c c c 点外连续,点 c c c 为函数 f ( x ) f(x) f(x) 的瑕点。则可类似的定义函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上的反常积分

∫ a c f ( x ) d x 和 ∫ c b f ( x ) d x \int_{a}^{c} f(x) dx \text{和} \int_{c}^{b} f(x) dx acf(x)dxcbf(x)dx

都收敛,则称反常积分 ∫ a b f ( x ) d x \int_{a}^{b} f(x) dx abf(x)dx 收敛,且

∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx abf(x)dx=acf(x)dx+cbf(x)dx

如果至少有一个发散,则称 ∫ a b f ( x ) d x \int_{a}^{b} f(x) dx abf(x)dx 发散


常用结论

∫ a b 1 ( x − a ) p d x { p < 1 , 发散 p ≥ 1 , 收敛 \int_{a}^{b} \frac{1}{(x-a)^p} dx {\left\{ \begin{aligned} p < 1 & , \text{发散} \\ p \ge 1 & , \text{收敛} \\ \end{aligned}\right. } ab(xa)p1dx{p<1p1,发散,收敛

∫ a b 1 ( b − x ) p d x { p < 1 , 发散 p ≥ 1 , 收敛 \int_{a}^{b} \frac{1}{(b-x)^p} dx {\left\{ \begin{aligned} p < 1 & , \text{发散} \\ p \ge 1 & , \text{收敛} \\ \end{aligned}\right. } ab(bx)p1dx{p<1p1,发散,收敛

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值