理解生成对抗网络

在这里插入图片描述
生成对抗网络

生成模型

可以分为两个类型
1、可以表现出数据确切的分布函数,2、新数据的生成
在生成对抗网络中,我们讨论的是第二种。
首先生成模型具备处理高维度概率分布的能力,
生成模型的应用
1、超高解析度成像
2、将低分辨率图还原成高分辨率图
3、生成艺术创造

自动编码器

我们已经了解生成模型就是让机器学习大量数据从而生成新数据,

数据压缩

自动编码器是一种神经网络模型,改模型的最初是为了对数据进行压缩,编码器的结构就是多层感知器的神经网络,输入层与输出层有相同的节点数量,中间编码层的节点数量少于输入和输出的。
在自动编码的前半部分叫做编码器,后半部分叫做解码器,编码器可以实现数据压缩,解码器可实现压缩数据还原成原始数据。因为在编码的时候对数据进行降维处理,所以在还原数据的时候会有一定的损失。
在这里插入图片描述
自动编码器中需要将编码器和解码器一起进行训练,训练数据一定是无标签数据

生成模型

在这里插入图片描述

先使用自动编码器训练模型,然后单独使用解码器作为生成模型,输入任意数据,解码器都可以生成对应的数据

由于受到训练数据集的限制,生成数据与输入数据相关内容。

自动编码器可以在keras上实现,但是在现实中,自动编码器不适合生成数据,仅仅做数据记录
因为自动编码器作为数据生成的是后与训练的数据有关,当我们输入一个与训练数据无关的例子,会生成一个噪声,所以提出变分自动编码器

变分自动编码器

为了解决不能通过新编码生成数据的问题,变分自动编码器(VAE)才是真正的生成模型。
在之前的自动编码器加入了限制,要求产生的隐含向量能够遵循高斯分布。帮助自动编码器能够真正读懂训练数据的潜在规律。
如果自动编码器学习到的是某一个确定的函数,那么VAE学习到的就是基于训练数据学习到的参数的概率分布。
在这里插入图片描述
需要注意的问题
1、网络整体的准确程度—网络还原程度的损失函数,通过输入数据与输出数据之间的均方距离
2、隐含变量是否很好吻合高斯分布–隐含变量与高斯分布相近程度的损失函数,通过KL来衡量。

KL 散度

度量两个概率分布之前的差异程度,KL越高,两者的差异程度越大,

函数

VAE网络来调节这两个损失函数,通过优化这个整体损失函数来达到最优

generation_loss=mean(square(generated_image-real_image))
latent_loss=KL-Divergence(latent_variable,unit_gaussian)
loss=generation_loss+latent_loss

VAE 生成数据

从高斯分布中随机采样一个隐含编码,然后将其输入解码器就可以生成全新数据,

VAE缺点

会生成与真实数据比较接近的数据,为了减小误差,有时候复制数据也是可能的,这就引出了GAN

GAN

最大似然估计

在这里插入图片描述
但是在真实运算中,我们是不知道真实数据函数的,通过从真实数据中采集大量样本
在这里插入图片描述
使得L最大值得意思就是在给出的训练集上能够逼近真实数据的概率分布。
计算乘法不好算,对Pmodel去对数,然后求导,
假设我们训练数据是满足高斯分布的一维数据,最后训练出来的概率模型分布式满足尽可能多的训练样本点
在这里插入图片描述

KL散度的公式

在这里插入图片描述
在实践中通过最大似然估计得到的生成模型比较模糊,因为一般的简单模型无法使得Pmodel逼近Pdata
因为真实数据的复杂性,采用神经网络(如GAN)可以将简单分布映射为几乎任何的复杂分布、
Ian在NIPS2016中给出了基于似然模型的生成模型分类
在这里插入图片描述
如上图,显式模型和隐式模型的区别是是否需要明确计算出一个明确的概率分布函数,大部分情况下,研究生成模型是为了生成数据,对概率分布函数并不关心,GAN属于隐式模型

生成对抗网络的数学推导

在这里插入图片描述
经过一个复杂的神经网络,我们很难计算出L
如何解决?
在这里插入图片描述
我们在这里引入了一个价值函数V,V越大,判别器越小,V越小,生成器越小,从而形成判别器和生成器的博弈关系。
博弈双方会形成一个纳什平衡点
经过一番推导
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nefelibat

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值