六维空间向量表示法公式笔记

这篇博客详细介绍了六维空间向量在描述刚体运动和力的应用,包括运动和力的六维表示、加法运算、模乘、点积、坐标变换、叉积、微分、加速度、空间动量、空间惯量以及空间运动方程。通过六维向量,可以更深入地理解和分析刚体的动态行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


目前对机器人动力学还没有一套标准的表示法,比如有3D向量、齐次矩阵、六维空间向量等。其中最有效的是六维空间向量( Spatial Vector Notation),本文是我看《Handbook of robotics》的笔记,其中看起来弯弯曲曲的字母 v f v f vf表示3维向量,看起来直直的v f 表示六维空间向量。

1、运动和力

为了区分刚体的运动(motion)和施加在刚体上的力(force),分别用运动六维向量空间 M 6 M^6 M6和力六维向量空间 F 6 F^6 F6来表示。两个空间及其各自的基向量如下图所示
在这里插入图片描述
两个空间共有12个基向量,6个用来描述运动,6个用来描述力。

在运动六维空间,对于一个坐标系 O x y z O_{xyz} Oxyz,三个描述分别绕坐标轴 O x O_x Ox O y O_y Oy O z O_z Oz进行旋转的基向量 d O x d_{Ox} dOx d O y d_{Oy} dOy d O z d_{Oz} dOz;三个描述分别沿着坐标轴 O x O_x Ox O y O_y Oy O z O_z Oz进行平移的基向量 d x d_{x} dx d y d_{y} dy d z d_{z} dz

在力六维空间,对于一个坐标系 O x y z O_{xyz} Oxyz,三个描述分别绕坐标轴 O x O_x Ox O y O_y Oy O z O_z Oz进行旋转的基向量 e O x e_{Ox} eOx e O y e_{Oy}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值