【元学习】MER论文解析:持续/增量学习下的元学习模型

论文: M. Reimer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, G. Tesauro, Learning to learn without forgetting by maximizing transfer and minimizing interference, in: ICLR, 2019.

提出了Meta-Experience Replay (MER) 模型,将经验重放与基于优化的元学习相结合,基于Reptile元学习模型,以最大限度地转移和最小化基于未来梯度的干扰

【原创,转载需标明出处】论文解析(内含论文原文、代码链接):Notion – The all-in-one workspace for your notes, tasks, wikis, and databases.

代码注释(分别针对 Task-IL 任务增量和 Class-IL 类增量场景下):https://blog.csdn.net/qq_41933740/article/details/120484992

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值