证明:旋转矩阵是正交矩阵

正交矩阵

定义:设 A A A n n n阶方阵,如果 A T A = I A^{T}A = I ATA=I A A T = I AA^T = I AAT=I,就称 A A A为正交矩阵。
性质:

  • 正交矩阵的每一个列向量都是单位向量,且向量之间两两正交。
  • 正交矩阵的行列式为1或者-1.
  • A − 1 = A T A^{-1} = A^T A1=AT(充要条件)

旋转矩阵

旋转矩阵描述了坐标系之间的旋转变换,由 3 × 3 3\times 3 3×3矩阵描述。旋转矩阵是一个正交矩阵。

证明

设存在笛卡尔坐标系 C A C_A CA,由 x A , y A , z A x_A,y_A,z_A xA,yA,zA列向量描述。假设原坐标系为全局参考坐标系,则 x A = [ 1 , 0 , 0 ] T x_A = [1,0,0]^T xA=[1,0,0]T, y A = [ 0 , 1 , 0 ] T y_A = [0,1,0]^T yA=[0,1,0]T, z A = [ 0 , 0 , 1 ] T z_A = [0,0,1]^T zA=[0,0,1]T。坐标系之间的转换可以描述为矩阵之间的相乘。由坐标系 C A C_A CA经过旋转矩阵 R R R转换到坐标系 C B C_B CB,即可描述为:
C B = R C A C_B = RC_A CB=RCA
由于 C A C_A CA为单位矩阵 I I I,则 C B = R C_B = R CB=R
其中 C B C_B CB x B , y B , z B x_B,y_B,z_B xB,yB,zB列向量描述,并且每个列向量在全局坐标系(在这里为 C A C_A CA)的具体值可以通过两个向量之间的投影获得。
x B = [ x B T x A , x B T y A , x B T z A ] T x_B = [x_B^Tx_A,x_B^Ty_A,x_B^Tz_A]^T xB=[xBTxA,xBTyA,xBTzA]T
同理:
y B = [ y B T x A , y B T y A , y B T z A ] T y_B =[y_B^Tx_A,y_B^Ty_A,y_B^Tz_A]^T yB=[yBTxA,yBTyA,yBTzA]T
z B = [ z B T x A , z B T y A , z B T z A ] T z_B = [z_B^Tx_A,z_B^Ty_A,z_B^Tz_A]^T zB=[zBTxA,zBTyA,zBTzA]T

由此:
R = C B = [ x B , y b , z b ] = [ x B T x A y B T x A z B T x A x B T y A y B T y A z B T y A x B T z A y B T z A z B T z A ] R = C_B =[x_B,y_b,z_b]= \begin{bmatrix} x_B^Tx_A&y_B^Tx_A&z_B^Tx_A\\ x_B^Ty_A&y_B^Ty_A&z_B^Ty_A\\ x_B^Tz_A&y_B^Tz_A&z_B^Tz_A \end{bmatrix} R=CB=[xB,yb,zb]=xBTxAxBTyAxBTzAyBTxAyBTyAyBTzAzBTxAzBTyAzBTzA
根据 R R R的关系式,可以间接推导出 R − 1 R^{-1} R1 R T R^{T} RT的关系式。

R T R^T RT由转置的定义得:
R T = [ x B T x A x B T y A x B T z A y B T x A y B T y A y B T z A z B T x A z B T y A z B T z A ] R^T = \begin{bmatrix} x_B^Tx_A&x_B^Ty_A&x_B^Tz_A\\ y_B^Tx_A&y_B^Ty_A&y_B^Tz_A\\ z_B^Tx_A&z_B^Ty_A&z_B^Tz_A \end{bmatrix} RT=xBTxAyBTxAzBTxAxBTyAyBTyAzBTyAxBTzAyBTzAzBTzA

R − 1 R^{-1} R1由旋转矩阵的定义
可以理解为旋转矩阵的逆变换,即由 C A = R − 1 C B C_A = R^{-1}C_B CA=R1CB,因此只需将 R R R矩阵中的 A A A B B B交换位置即可。
可得:
R − 1 = [ x B T x A x B T y A x B T z A y B T x A y B T y A y B T z A z B T x A z B T y A z B T z A ] R^{-1} = \begin{bmatrix} x_B^Tx_A&x_B^Ty_A&x_B^Tz_A\\ y_B^Tx_A&y_B^Ty_A&y_B^Tz_A\\ z_B^Tx_A&z_B^Ty_A&z_B^Tz_A \end{bmatrix} R1=xBTxAyBTxAzBTxAxBTyAyBTyAzBTyAxBTzAyBTzAzBTzA
因此
R T = R − 1 R^T = R^{-1} RT=R1
即旋转矩阵是正交矩阵。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值