量子信息-学习记录1

1.1.关于课程(略)

1.2.经典计算(经典电路模型)

1.2 (a)bit与n-bit串

定义:bit(binary digit),经典信息与计算的最小单位

取值范围集:{0,1}

状态只能处于x=0或x=1

2-bit串:

x 1 = 0 , 1 x 2 = 0 , 1 x_1=0,1\\ x_2=0,1 x1=0,1x2=0,1

也能表示为:

{ x 1 x 2 ∣ x i = 0 , 1 ,   i = 0 , 1 x_1x_2|x_i=0,1,\ i=0,1 x1x2xi=0,1, i=0,1}

n-bit串

{ x 1 x 2 … x n ∣ x i = 0 , 1 ,   i = 1 , 2 , … , n x_1x_2\dots x_n|x_i=0,1,\ i=1,2,\dots ,n x1x2xnxi=0,1, i=1,2,,n}

可以有 2 n 2^n 2n种不同的串

1.2 (b)逻辑门

定义:1-bit逻辑门包括非门(NoT)和恒等门(Id),对1-bit进行运算

非门: x → x ˉ ,   N O T ( x ) = 1 − x = 1 + x = x ˉ x\rightarrow \bar{x},\ NOT(x)=1-x=1+x=\bar{x} xxˉ, NOT(x)=1x=1+x=xˉ,类比C语言中的 ! x !x !x

恒等门: x → x x\rightarrow x xx I d ( x ) = x Id(x)=x Id(x)=x, x = 0 , 1 x=0,1 x=0,1

两次非门运算等价于恒等门: ( N O T ) 2 = I d (NOT)^2=Id (NOT)2=Id

定义:2-bit门:包括与门(AND)、或门(OR)、异或门(XOR)、NAND(与非)门、NOR(或非)门,COPY门,对2-bit进行运算

与门: ( x , y ) → A N D ( x , y ) = x ⋅ y = x ∧ y (x,y)\rightarrow AND(x,y)=x\cdot y=x\wedge y (x,y)AND(x,y)=xy=xy,类比C语言中的 x   & &   y x\ \&\&\ y x && y

或门: ( x , y ) → O R ( x , y ) = x + y − x ⋅ y = x ∨ y (x,y)\rightarrow OR(x,y)=x+y-x\cdot y=x\vee y (x,y)OR(x,y)=x+yxy=xy,类比C语言中的 x   ∣ ∣   y x\ ||\ y x  y

异或门(Exclusive OR Gate): X O R ( x , y ) = x ⊕ y XOR(x,y)=x\oplus y XOR(x,y)=xy,其中 ⊕ \oplus 是异或运算符,例如: 1 ⊕ 1 = 0 ,   0 ⊕ 0 = 0 ,   1 ⊕ 0 = 1 1\oplus1=0,\ 0\oplus0=0,\ 1\oplus 0=1 11=0, 00=0, 10=1。异或运算的特点是,当不同的两个变量输入时,输出为1,否则输出为0

NAND门: N A N D ( x , y ) = N O T ⋅ A N D ( x , y ) = x ⋅ y ‾ = 1 − x ⋅ y NAND(x,y)=NOT\cdot AND(x,y)=\overline{x\cdot y}=1-x\cdot y NAND(x,y)=NOTAND(x,y)=xy=1xy,相当于与门前面加上非门

NOR门: N O R ( x , y ) = N O T ⋅ O R ( x , y ) = x ∨ y ‾ = x ˉ ∧ y ˉ NOR(x,y)=NOT\cdot OR(x,y)=\overline{x\vee y}=\bar{x}\wedge \bar{y} NOR(x,y)=NOTOR(x,y)=xy=xˉyˉ,相当于或门前面加上非门

COPY门: C O P Y ( x ) = ( x , x ) COPY(x)=(x,x) COPY(x)=(x,x)(?)

定义:3-bit门:包括Toffoli门、Fredkin门,对3-bit进行运算

Toffoli门: ( x , y , z ) → T o f f o l i ( x , y , z ) = ( x , y , z ⊕ x ⋅ y ) (x,y,z)\rightarrow Toffoli(x,y,z)=(x,y,z\oplus x\cdot y) (x,y,z)Toffoli(x,y,z)=(x,y,zxy)

Fredkin门: ( x , y , z ) → F r e d ( x , y , z ) = ( x , x z ⊕ x ˉ y , x y ⊕ x ˉ z ) (x,y,z)\rightarrow Fred(x,y,z)=(x,xz\oplus \bar{x}y,xy\oplus \bar x z) (x,y,z)Fred(x,y,z)=(x,xzxˉy,xyxˉz)

定义:可逆门

例如:与门、或门、异或门、NAND门、NOR门是不可逆门(造成了信息损失),而恒等门、非门、Toffoli门、Fredkin门是可逆门(信息守恒)

定义:经典电路模型是一种经典计算的模型,它由一系列有限的逻辑门作用在有限长的bit串上(Turing machine)

定义:普遍门集(universal gate):可以用来表示任何有限门集的基础门集

定理:门集{AND, NOT}或{OR, NOT}或{NAND, COPY}是普遍门集

定义:可逆计算是使用了可逆门的计算

定理:一个3-bit的Toffoli门(或3-bit的Fredkin门)可以进行普遍可逆的经典计算

问题:如何用与门和非门构建COPY门

1.3.信息与计算属于物理概念

David Deutsch于1985年提出:“计算机能否进行计算,只取决于物理定律,而与数学方法无关”,具有非常大的争议

参考:
【1】[Cambridge Series on Information and the Natural Sciences] Michael A. Nielsen, Isaac L. Chuang - Quantum computation and quantum information (2004, Cambridge University Press) - libgen.lc
【2】Lecture Notes on Quantum Information and Computation, Yong Zhang, School of Physics and Technology, Wuhan University

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值