量子信息-学习记录4

ch.4. Control Unitary门

定义:对A进行control操作时,如果A为真,则结果为B。反之如果A为假,则结果为C。

定义:Control Unitary门
C U : ∣ c ⟩ ∣ t ⟩ → ∣ c ⟩ U c ∣ t ⟩ CU:|c\rang|t\rang\rightarrow |c\rang U^c |t\rang CU:ctcUct
其中 ∣ c ⟩ |c\rang c为控制qubit, ∣ t ⟩ |t\rang t为目标qubit, U c U^c Uc是一个n-qubit门,属于 S U ( 2 n ) SU(2^n) SU(2n)

CU门的图像表示如下,其中, ∣ t ⟩ |t\rang t处画了多条横线,用于表示 ∣ t ⟩ |t\rang t是n-qubit的:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Yt4YXl08-1601436077874)(C:\Users\蔡三圈\AppData\Roaming\Typora\typora-user-images\image-20200930092443882.png)]

{ c = 0 ,   ∣ 0 ⟩ ∣ t ⟩ → C U ∣ 0 ⟩ ∣ t ⟩ ,   w i t h   U 0 = I d c = 1 ,   ∣ 1 ⟩ ∣ t ⟩ → C U ∣ 1 ⟩ U ∣ t ⟩ \left\{\begin{aligned}&c=0,\ |0\rang|t\rang\mathop\rightarrow\limits^{CU}|0\rang|t\rang,\ with\ U^0=Id\\&c=1,\ |1\rang|t\rang\mathop\rightarrow\limits^{CU}|1\rang U|t\rang\end{aligned}\right. c=0, 0tCU0t, with U0=Idc=1, 1tCU1Ut

因此:

C U = ∣ 0 ⟩ ⟨ 0 ∣ ⊗ I d + ∣ 1 ⟩ ⟨ 1 ∣ ⊗ U CU=|0\rang\lang 0|\otimes Id +|1\rang\lang 1|\otimes U CU=00Id+11U

引理:一个满足2-qubit的CU门:
U = e i α A X B X C   w i t h   A B C = I 2 U=e^{i\alpha}AXBXC\ with\ ABC=I_2 U=eiαAXBXC with ABC=I2
可以被分解为CNOT门及单qubit门的组合

证明:
CU门= ( I 2 0 0 e i α A X B X C ) \left(\begin{matrix}I_2 & 0\\0 & e^{i\alpha}AXBXC\end{matrix}\right) (I200eiαAXBXC)

( I 2 0 0 e i α A X B X C ) = ( I 2 0 0 e i α I 2 ) ( A 0 0 A ) ( I 2 0 0 X ) ( B 0 0 B ) ( I 2 0 0 X ) ( C 0 0 C ) = ( R α ⊗ I 2 ) ( I 2 ⊗ A ) C N O T ( I 2 ⊗ B ) C N O T ( I 2 ⊗ C ) \begin{aligned}&\left(\begin{matrix}I_2 & 0\\0 & e^{i\alpha}AXBXC\end{matrix}\right)\\ =&\left(\begin{matrix}I_2 & 0\\0 & e^{i\alpha}I_2\end{matrix}\right)\left(\begin{matrix}A & 0\\0 & A\end{matrix}\right)\left(\begin{matrix}I_2 & 0\\0 & X\end{matrix}\right)\left(\begin{matrix}B & 0\\0 & B\end{matrix}\right)\left(\begin{matrix}I_2 & 0\\0 & X\end{matrix}\right)\left(\begin{matrix}C & 0\\0 & C\end{matrix}\right)\\ =&(R_\alpha\otimes I_2)(I_2\otimes A)CNOT(I_2\otimes B)CNOT(I_2\otimes C)\end{aligned} ==(I200eiαAXBXC)(I200eiαI2)(A00A)(I200X)(B00B)(I200X)(C00C)(RαI2)(I2A)CNOT(I2B)CNOT(I2C)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M4r0GFpC-1601436077880)(C:\Users\蔡三圈\AppData\Roaming\Typora\typora-user-images\image-20200930094418118.png)]

定理:任何2-qubit的CU门可以被分解为CNOT门和单qubit门的组合

证明:任何单qubit门

U = e i α R z ( β ) R y ( γ ) R z ( δ ) U=e^{i\alpha}R_z(\beta)R_y(\gamma)R_z(\delta) U=eiαRz(β)Ry(γ)Rz(δ)

都可以被分解为 U = e i α A X B X C U=e^{i\alpha}AXBXC U=eiαAXBXC,其中 A = R z ( β ) R y ( γ 2 ) A=R_z(\beta)R_y(\frac{\gamma}{2}) A=Rz(β)Ry(2γ) B = R y ( − γ 2 ) R z ( − δ + β 2 ) B=R_y(-\frac{\gamma}{2})R_z(-\frac{\delta+\beta}{2}) B=Ry(2γ)Rz(2δ+β) C = R z ( δ − β 2 ) C=R_z(\frac{\delta-\beta}{2}) C=Rz(2δβ) A B C = I 2 ABC=I_2 ABC=I2

量子Toffoli门和量子Fredkin门

CNOT门:Controlled-NOT门: U = N O T = X = σ x U=NOT=X=\sigma_x U=NOT=X=σx

量子Toffoli门:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bpM6edNx-1601436077884)(C:\Users\蔡三圈\AppData\Roaming\Typora\typora-user-images\image-20200930100604823.png)]

相当于controlled-controlled-NOT门:将 ∣ z ⟩ |z\rang z线上的 ⊕ \oplus 换为X门,对应的右端输出为 X x y ∣ z ⟩ = ∣ x y ⊕ z ⟩ X^{xy}|z\rang=|xy\oplus z\rang Xxyz=xyz

量子Fredkin门:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QWRNoWMD-1601436077891)(C:\Users\蔡三圈\AppData\Roaming\Typora\typora-user-images\image-20200930100930908.png)]

相当于controlled-SWAP门:将 ∣ y ⟩ |y\rang y ∣ z ⟩ |z\rang z两条线上的门换成一个SWAP门,最后得到的 S W A P x ∣ y z ⟩ SWAP^x|yz\rang SWAPxyz和原本的输出是一样的
证明: S W A P x ∣ y z ⟩ = ∣ x z + x ˉ y ⟩ ∣ x y + x ˉ z ⟩ SWAP^x|yz\rang=|xz+\bar xy\rang|xy+\bar xz\rang SWAPxyz=xz+xˉyxy+xˉz
x=0时, L H S = S W A P x ∣ y z ⟩ = I d ∣ y z ⟩ = ∣ y z ⟩ LHS=SWAP^x|yz\rang=Id|yz\rang=|yz\rang LHS=SWAPxyz=Idyz=yz
R H S = ∣ y ⟩ ∣ z ⟩ RHS=|y\rang|z\rang RHS=yz
x=1时, L H S = S W A P ∣ y z ⟩ = ∣ z y ⟩ LHS=SWAP|yz\rang=|zy\rang LHS=SWAPyz=zy
R H S = ∣ 1 z + 1 ˉ y ⟩ ∣ 1 y + 1 ˉ z ⟩ = ∣ z y ⟩ RHS=|1z+\bar 1 y\rang|1y+\bar 1 z\rang=|zy\rang RHS=1z+1ˉy1y+1ˉz=zy

定理:使用三个Toffoli门可以构造量子Fredkin门,其中对于第一个和第三个Toffoli门,目标qubit为 ∣ c ⟩ |c\rang c,对于第二个Toffoli门,目标qubit为 ∣ b ⟩ |b\rang b
证明:将通过各门前后的状态分别划分为 t 0 t_0 t0 t 1 t_1 t1 t 2 t_2 t2 t 3 t_3 t3,则有: ∣ ψ ( t 0 ) ⟩ = ∣ a ⟩ ∣ b ⟩ ∣ c ⟩ |\psi(t_0)\rang=|a\rang|b\rang|c\rang ψ(t0)=abc
∣ ψ ( t 1 ) ⟩ = ∣ a ⟩ ∣ b ⟩ ∣ a b ⊕ c ⟩ |\psi(t_1)\rang=|a\rang|b\rang|ab\oplus c\rang ψ(t1)=ababc
∣ ψ ( t 2 ) ⟩ = ∣ a ⟩ ∣ ( a b ⊕ c ) a ⊕ b ⟩ ∣ a b ⊕ c ⟩ |\psi(t_2)\rang=|a\rang|(ab\oplus c)a\oplus b\rang|ab\oplus c\rang ψ(t2)=a(abc)ababc
其中, ( a b ⊕ c ) a ⊕ b = { a = 0 ,   b a = 1 ,   b ⊕ c ⊕ b = a ˉ b ⊕ a c (ab\oplus c)a\oplus b=\left\{\begin{aligned}&a=0,\ b\\&a=1,\ b\oplus c\oplus b\end{aligned}\right.=\bar a b\oplus ac (abc)ab={a=0, ba=1, bcb=aˉbac
∣ ψ ( t 3 ) ⟩ = ∣ a ⟩ ∣ a ˉ b ⊕ a c ⟩ ∣ a ( a ˉ b ⊕ a c ) ⊕ a b ⊕ c ⟩ |\psi(t_3)\rang=|a\rang|\bar ab\oplus ac\rang|a(\bar a b\oplus ac)\oplus ab\oplus c\rang ψ(t3)=aaˉbaca(aˉbac)abc
同理, a ( a ˉ b ⊕ a c ) ⊕ a b ⊕ c = a ˉ c ⊕ a b a(\bar ab\oplus ac)\oplus ab\oplus c=\bar ac\oplus ab a(aˉbac)abc=aˉcab
因此: ∣ ψ ( t 3 ) ⟩ = ∣ a ⟩ ∣ a ˉ b ⊕ a c ⟩ ∣ a ˉ c ⊕ a b ⟩ = F r e d k i n ∣ a ⟩ ∣ b ⟩ ∣ c ⟩ |\psi(t_3)\rang=|a\rang|\bar ab\oplus ac\rang|\bar a c\oplus ab\rang=Fredkin|a\rang|b\rang|c\rang ψ(t3)=aaˉbacaˉcab=Fredkinabc

使用一个Toffoli门和两个CNOT门可以构造Fredkin门

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zqOna19Z-1601436077895)(C:\Users\蔡三圈\AppData\Roaming\Typora\typora-user-images\image-20200930103236744.png)]

证明:同样地,将输入输出各门前后划分为四个状态,有:
∣ ψ ( t 0 ) ⟩ = ∣ a ⟩ ∣ b ⟩ ∣ c ⟩ |\psi(t_0)\rang=|a\rang|b\rang|c\rang ψ(t0)=abc
∣ ψ ( t 1 ) ⟩ = ∣ a ⟩ ∣ b ⟩ ∣ b ⊕ c ⟩ |\psi(t_1)\rang=|a\rang|b\rang|b\oplus c\rang ψ(t1)=abbc
∣ ψ ( t 2 ) ⟩ = ∣ a ⟩ ∣ a ( b ⊕ c ) ⊕ b ⟩ ∣ b ⊕ c ⟩ = ∣ a ⟩ ∣ a ˉ b ⊕ a c ⟩ ∣ b ⊕ c ⟩ |\psi(t_2)\rang=|a\rang|a(b\oplus c)\oplus b\rang|b \oplus c\rang\\=|a\rang|\bar ab\oplus ac\rang|b\oplus c\rang ψ(t2)=aa(bc)bbc=aaˉbacbc
∣ ψ ( t 3 ) ⟩ = ∣ a ⟩ ∣ a ˉ b ⊕ a c ⟩ ∣ a ˉ b ⊕ a c ⊕ b ⊕ c ⟩ = ∣ a ⟩ ∣ a ˉ b ⊕ a c ⟩ ∣ a ˉ c ⊕ a b ⟩ = F r e d k i n ∣ a ⟩ ∣ b ⟩ ∣ c ⟩ |\psi(t_3)\rang=|a\rang|\bar ab\oplus ac\rang|\bar ab\oplus ac\oplus b\oplus c\rang\\=|a\rang|\bar ab\oplus ac\rang|\bar ac\oplus ab\rang\\=Fredkin|a\rang|b\rang|c\rang ψ(t3)=aaˉbacaˉbacbc=aaˉbacaˉcab=Fredkinabc

3-qubit CU门的分解

引理:一个3-qubit的CU门可以被表示为2-qubit的unitary门的组合:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-n61MVjos-1601436077896)(C:\Users\蔡三圈\AppData\Roaming\Typora\typora-user-images\image-20200930104705407.png)]
等效于:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Sivjb08A-1601436077898)(C:\Users\蔡三圈\AppData\Roaming\Typora\typora-user-images\image-20200930105104903.png)]

Barenco门:是 R g = e − i π 4 R x ( θ 2 ) R_g=e^{-i\frac{\pi}{4}}R_x(\frac{\theta}{2}) Rg=ei4πRx(2θ)的CU门
B g = ∣ 0 ⟩ ⟨ 0 ∣ ⊗ I 2 + ∣ 1 ⟩ ⟨ 1 ∣ ⊗ R g B_g=|0\rang\lang 0|\otimes I_2+|1\rang\lang 1|\otimes R_g Bg=00I2+11Rg

Deutsch门: D g = R g 2 D_g=R_g^2 Dg=Rg2
Deutsch门可以被表示为一系列CNOT门、Barence门及其逆向门的组合。

普遍量子门

定义:一个普遍量子门集,是一系列的能表示任何unitary矩阵基础门的集合

定义:有 e i θ 1 ,   e i θ 2 ,   e i θ 3 ,   e i θ 4 e^{i\theta_1},\ e^{i\theta_2},\ e^{i\theta_3},\ e^{i\theta_4} eiθ1, eiθ2, eiθ3, eiθ4这四个特征值,其中 θ i π \frac{\theta_i}{\pi} πθi是无理数, θ i θ j ( i ≠ j ) \frac{\theta_i}{\theta_j}(i\neq j) θjθi(i=j)也是无理数(这样的门被定义为通用的2-qubit门)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值