ch.4. Control Unitary门
定义:对A进行control操作时,如果A为真,则结果为B。反之如果A为假,则结果为C。
定义:Control Unitary门
C
U
:
∣
c
⟩
∣
t
⟩
→
∣
c
⟩
U
c
∣
t
⟩
CU:|c\rang|t\rang\rightarrow |c\rang U^c |t\rang
CU:∣c⟩∣t⟩→∣c⟩Uc∣t⟩
其中
∣
c
⟩
|c\rang
∣c⟩为控制qubit,
∣
t
⟩
|t\rang
∣t⟩为目标qubit,
U
c
U^c
Uc是一个n-qubit门,属于
S
U
(
2
n
)
SU(2^n)
SU(2n)群
CU门的图像表示如下,其中, ∣ t ⟩ |t\rang ∣t⟩处画了多条横线,用于表示 ∣ t ⟩ |t\rang ∣t⟩是n-qubit的:
{ c = 0 , ∣ 0 ⟩ ∣ t ⟩ → C U ∣ 0 ⟩ ∣ t ⟩ , w i t h U 0 = I d c = 1 , ∣ 1 ⟩ ∣ t ⟩ → C U ∣ 1 ⟩ U ∣ t ⟩ \left\{\begin{aligned}&c=0,\ |0\rang|t\rang\mathop\rightarrow\limits^{CU}|0\rang|t\rang,\ with\ U^0=Id\\&c=1,\ |1\rang|t\rang\mathop\rightarrow\limits^{CU}|1\rang U|t\rang\end{aligned}\right. ⎩⎨⎧c=0, ∣0⟩∣t⟩→CU∣0⟩∣t⟩, with U0=Idc=1, ∣1⟩∣t⟩→CU∣1⟩U∣t⟩
因此:
C U = ∣ 0 ⟩ ⟨ 0 ∣ ⊗ I d + ∣ 1 ⟩ ⟨ 1 ∣ ⊗ U CU=|0\rang\lang 0|\otimes Id +|1\rang\lang 1|\otimes U CU=∣0⟩⟨0∣⊗Id+∣1⟩⟨1∣⊗U
引理:一个满足2-qubit的CU门:
U
=
e
i
α
A
X
B
X
C
w
i
t
h
A
B
C
=
I
2
U=e^{i\alpha}AXBXC\ with\ ABC=I_2
U=eiαAXBXC with ABC=I2
可以被分解为CNOT门及单qubit门的组合
证明:
CU门=
(
I
2
0
0
e
i
α
A
X
B
X
C
)
\left(\begin{matrix}I_2 & 0\\0 & e^{i\alpha}AXBXC\end{matrix}\right)
(I200eiαAXBXC)
( I 2 0 0 e i α A X B X C ) = ( I 2 0 0 e i α I 2 ) ( A 0 0 A ) ( I 2 0 0 X ) ( B 0 0 B ) ( I 2 0 0 X ) ( C 0 0 C ) = ( R α ⊗ I 2 ) ( I 2 ⊗ A ) C N O T ( I 2 ⊗ B ) C N O T ( I 2 ⊗ C ) \begin{aligned}&\left(\begin{matrix}I_2 & 0\\0 & e^{i\alpha}AXBXC\end{matrix}\right)\\ =&\left(\begin{matrix}I_2 & 0\\0 & e^{i\alpha}I_2\end{matrix}\right)\left(\begin{matrix}A & 0\\0 & A\end{matrix}\right)\left(\begin{matrix}I_2 & 0\\0 & X\end{matrix}\right)\left(\begin{matrix}B & 0\\0 & B\end{matrix}\right)\left(\begin{matrix}I_2 & 0\\0 & X\end{matrix}\right)\left(\begin{matrix}C & 0\\0 & C\end{matrix}\right)\\ =&(R_\alpha\otimes I_2)(I_2\otimes A)CNOT(I_2\otimes B)CNOT(I_2\otimes C)\end{aligned} ==(I200eiαAXBXC)(I200eiαI2)(A00A)(I200X)(B00B)(I200X)(C00C)(Rα⊗I2)(I2⊗A)CNOT(I2⊗B)CNOT(I2⊗C)
定理:任何2-qubit的CU门可以被分解为CNOT门和单qubit门的组合
证明:任何单qubit门
U = e i α R z ( β ) R y ( γ ) R z ( δ ) U=e^{i\alpha}R_z(\beta)R_y(\gamma)R_z(\delta) U=eiαRz(β)Ry(γ)Rz(δ)
都可以被分解为 U = e i α A X B X C U=e^{i\alpha}AXBXC U=eiαAXBXC,其中 A = R z ( β ) R y ( γ 2 ) A=R_z(\beta)R_y(\frac{\gamma}{2}) A=Rz(β)Ry(2γ), B = R y ( − γ 2 ) R z ( − δ + β 2 ) B=R_y(-\frac{\gamma}{2})R_z(-\frac{\delta+\beta}{2}) B=Ry(−2γ)Rz(−2δ+β), C = R z ( δ − β 2 ) C=R_z(\frac{\delta-\beta}{2}) C=Rz(2δ−β), A B C = I 2 ABC=I_2 ABC=I2
量子Toffoli门和量子Fredkin门
CNOT门:Controlled-NOT门: U = N O T = X = σ x U=NOT=X=\sigma_x U=NOT=X=σx
量子Toffoli门:
相当于controlled-controlled-NOT门:将 ∣ z ⟩ |z\rang ∣z⟩线上的 ⊕ \oplus ⊕换为X门,对应的右端输出为 X x y ∣ z ⟩ = ∣ x y ⊕ z ⟩ X^{xy}|z\rang=|xy\oplus z\rang Xxy∣z⟩=∣xy⊕z⟩
量子Fredkin门:
相当于controlled-SWAP门:将
∣
y
⟩
|y\rang
∣y⟩和
∣
z
⟩
|z\rang
∣z⟩两条线上的门换成一个SWAP门,最后得到的
S
W
A
P
x
∣
y
z
⟩
SWAP^x|yz\rang
SWAPx∣yz⟩和原本的输出是一样的
证明:
S
W
A
P
x
∣
y
z
⟩
=
∣
x
z
+
x
ˉ
y
⟩
∣
x
y
+
x
ˉ
z
⟩
SWAP^x|yz\rang=|xz+\bar xy\rang|xy+\bar xz\rang
SWAPx∣yz⟩=∣xz+xˉy⟩∣xy+xˉz⟩
x=0时,
L
H
S
=
S
W
A
P
x
∣
y
z
⟩
=
I
d
∣
y
z
⟩
=
∣
y
z
⟩
LHS=SWAP^x|yz\rang=Id|yz\rang=|yz\rang
LHS=SWAPx∣yz⟩=Id∣yz⟩=∣yz⟩
R
H
S
=
∣
y
⟩
∣
z
⟩
RHS=|y\rang|z\rang
RHS=∣y⟩∣z⟩
x=1时,
L
H
S
=
S
W
A
P
∣
y
z
⟩
=
∣
z
y
⟩
LHS=SWAP|yz\rang=|zy\rang
LHS=SWAP∣yz⟩=∣zy⟩
R
H
S
=
∣
1
z
+
1
ˉ
y
⟩
∣
1
y
+
1
ˉ
z
⟩
=
∣
z
y
⟩
RHS=|1z+\bar 1 y\rang|1y+\bar 1 z\rang=|zy\rang
RHS=∣1z+1ˉy⟩∣1y+1ˉz⟩=∣zy⟩
定理:使用三个Toffoli门可以构造量子Fredkin门,其中对于第一个和第三个Toffoli门,目标qubit为
∣
c
⟩
|c\rang
∣c⟩,对于第二个Toffoli门,目标qubit为
∣
b
⟩
|b\rang
∣b⟩
证明:将通过各门前后的状态分别划分为
t
0
t_0
t0,
t
1
t_1
t1,
t
2
t_2
t2,
t
3
t_3
t3,则有:
∣
ψ
(
t
0
)
⟩
=
∣
a
⟩
∣
b
⟩
∣
c
⟩
|\psi(t_0)\rang=|a\rang|b\rang|c\rang
∣ψ(t0)⟩=∣a⟩∣b⟩∣c⟩
∣
ψ
(
t
1
)
⟩
=
∣
a
⟩
∣
b
⟩
∣
a
b
⊕
c
⟩
|\psi(t_1)\rang=|a\rang|b\rang|ab\oplus c\rang
∣ψ(t1)⟩=∣a⟩∣b⟩∣ab⊕c⟩
∣
ψ
(
t
2
)
⟩
=
∣
a
⟩
∣
(
a
b
⊕
c
)
a
⊕
b
⟩
∣
a
b
⊕
c
⟩
|\psi(t_2)\rang=|a\rang|(ab\oplus c)a\oplus b\rang|ab\oplus c\rang
∣ψ(t2)⟩=∣a⟩∣(ab⊕c)a⊕b⟩∣ab⊕c⟩
其中,
(
a
b
⊕
c
)
a
⊕
b
=
{
a
=
0
,
b
a
=
1
,
b
⊕
c
⊕
b
=
a
ˉ
b
⊕
a
c
(ab\oplus c)a\oplus b=\left\{\begin{aligned}&a=0,\ b\\&a=1,\ b\oplus c\oplus b\end{aligned}\right.=\bar a b\oplus ac
(ab⊕c)a⊕b={a=0, ba=1, b⊕c⊕b=aˉb⊕ac
∣
ψ
(
t
3
)
⟩
=
∣
a
⟩
∣
a
ˉ
b
⊕
a
c
⟩
∣
a
(
a
ˉ
b
⊕
a
c
)
⊕
a
b
⊕
c
⟩
|\psi(t_3)\rang=|a\rang|\bar ab\oplus ac\rang|a(\bar a b\oplus ac)\oplus ab\oplus c\rang
∣ψ(t3)⟩=∣a⟩∣aˉb⊕ac⟩∣a(aˉb⊕ac)⊕ab⊕c⟩
同理,
a
(
a
ˉ
b
⊕
a
c
)
⊕
a
b
⊕
c
=
a
ˉ
c
⊕
a
b
a(\bar ab\oplus ac)\oplus ab\oplus c=\bar ac\oplus ab
a(aˉb⊕ac)⊕ab⊕c=aˉc⊕ab
因此:
∣
ψ
(
t
3
)
⟩
=
∣
a
⟩
∣
a
ˉ
b
⊕
a
c
⟩
∣
a
ˉ
c
⊕
a
b
⟩
=
F
r
e
d
k
i
n
∣
a
⟩
∣
b
⟩
∣
c
⟩
|\psi(t_3)\rang=|a\rang|\bar ab\oplus ac\rang|\bar a c\oplus ab\rang=Fredkin|a\rang|b\rang|c\rang
∣ψ(t3)⟩=∣a⟩∣aˉb⊕ac⟩∣aˉc⊕ab⟩=Fredkin∣a⟩∣b⟩∣c⟩
使用一个Toffoli门和两个CNOT门可以构造Fredkin门
证明:同样地,将输入输出各门前后划分为四个状态,有:
∣
ψ
(
t
0
)
⟩
=
∣
a
⟩
∣
b
⟩
∣
c
⟩
|\psi(t_0)\rang=|a\rang|b\rang|c\rang
∣ψ(t0)⟩=∣a⟩∣b⟩∣c⟩
∣
ψ
(
t
1
)
⟩
=
∣
a
⟩
∣
b
⟩
∣
b
⊕
c
⟩
|\psi(t_1)\rang=|a\rang|b\rang|b\oplus c\rang
∣ψ(t1)⟩=∣a⟩∣b⟩∣b⊕c⟩
∣
ψ
(
t
2
)
⟩
=
∣
a
⟩
∣
a
(
b
⊕
c
)
⊕
b
⟩
∣
b
⊕
c
⟩
=
∣
a
⟩
∣
a
ˉ
b
⊕
a
c
⟩
∣
b
⊕
c
⟩
|\psi(t_2)\rang=|a\rang|a(b\oplus c)\oplus b\rang|b \oplus c\rang\\=|a\rang|\bar ab\oplus ac\rang|b\oplus c\rang
∣ψ(t2)⟩=∣a⟩∣a(b⊕c)⊕b⟩∣b⊕c⟩=∣a⟩∣aˉb⊕ac⟩∣b⊕c⟩
∣
ψ
(
t
3
)
⟩
=
∣
a
⟩
∣
a
ˉ
b
⊕
a
c
⟩
∣
a
ˉ
b
⊕
a
c
⊕
b
⊕
c
⟩
=
∣
a
⟩
∣
a
ˉ
b
⊕
a
c
⟩
∣
a
ˉ
c
⊕
a
b
⟩
=
F
r
e
d
k
i
n
∣
a
⟩
∣
b
⟩
∣
c
⟩
|\psi(t_3)\rang=|a\rang|\bar ab\oplus ac\rang|\bar ab\oplus ac\oplus b\oplus c\rang\\=|a\rang|\bar ab\oplus ac\rang|\bar ac\oplus ab\rang\\=Fredkin|a\rang|b\rang|c\rang
∣ψ(t3)⟩=∣a⟩∣aˉb⊕ac⟩∣aˉb⊕ac⊕b⊕c⟩=∣a⟩∣aˉb⊕ac⟩∣aˉc⊕ab⟩=Fredkin∣a⟩∣b⟩∣c⟩
3-qubit CU门的分解
引理:一个3-qubit的CU门可以被表示为2-qubit的unitary门的组合:
等效于:
Barenco门:是
R
g
=
e
−
i
π
4
R
x
(
θ
2
)
R_g=e^{-i\frac{\pi}{4}}R_x(\frac{\theta}{2})
Rg=e−i4πRx(2θ)的CU门
B
g
=
∣
0
⟩
⟨
0
∣
⊗
I
2
+
∣
1
⟩
⟨
1
∣
⊗
R
g
B_g=|0\rang\lang 0|\otimes I_2+|1\rang\lang 1|\otimes R_g
Bg=∣0⟩⟨0∣⊗I2+∣1⟩⟨1∣⊗Rg
Deutsch门:
D
g
=
R
g
2
D_g=R_g^2
Dg=Rg2
Deutsch门可以被表示为一系列CNOT门、Barence门及其逆向门的组合。
普遍量子门
定义:一个普遍量子门集,是一系列的能表示任何unitary矩阵基础门的集合
定义:有 e i θ 1 , e i θ 2 , e i θ 3 , e i θ 4 e^{i\theta_1},\ e^{i\theta_2},\ e^{i\theta_3},\ e^{i\theta_4} eiθ1, eiθ2, eiθ3, eiθ4这四个特征值,其中 θ i π \frac{\theta_i}{\pi} πθi是无理数, θ i θ j ( i ≠ j ) \frac{\theta_i}{\theta_j}(i\neq j) θjθi(i=j)也是无理数(这样的门被定义为通用的2-qubit门)