导数极限定理

文章讨论了分段函数导数与两侧导数极限的区别,指出并非所有情况下它们相等,强调了导数极限定理,即函数在某点可导的条件是邻域连续、去心邻域可导且导函数极限存在。
摘要由CSDN通过智能技术生成

分段点的导数是否可以用两侧导函数的极限来求?

在以前有一个问题一直困扰着我,对于分段函数的导函数是否可以用两侧导函数的极限去求,我曾长期认为我这种想法没有问题,并且对于高中时期的题目我也一直这么干,也没错过,但我从未求证过,直到看到了导数极限定理才解开了我的疑惑。
以下先给出两侧导数的定义
f ( x ) f(x) f(x) x 0 x_{0} x0处的右导数: lim ⁡ Δ x → 0 + Δ y Δ x = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x , ( 0 < Δ x < δ ) \lim_{\Delta x \rightarrow 0^{+}}\frac{\Delta y}{\Delta x}= \lim _{\Delta x \rightarrow 0^{+}}\frac{f(x_{0}+ \Delta x)-f(x_{0})}{\Delta x},(0< \Delta x< \delta) limΔx0+ΔxΔy=limΔx0+Δxf(x0+Δx)f(x0),(0<Δx<δ)
f ( x ) f(x) f(x) x 0 x_{0} x0处的左导数: lim ⁡ Δ x → 0 − Δ y Δ x = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x , ( 0 < Δ x < δ ) \lim_{\Delta x \rightarrow 0^{-}}\frac{\Delta y}{\Delta x}= \lim _{\Delta x \rightarrow 0^{-}}\frac{f(x_{0}+ \Delta x)-f(x_{0})}{\Delta x},(0< \Delta x< \delta) limΔx0ΔxΔy=limΔx0Δxf(x0+Δx)f(x0),(0<Δx<δ)
我们这里将 f ( x ) f(x) f(x) x 0 x_{0} x0处的左导数记为 f − ′ ( x 0 ) f'_{-}(x_{0}) f(x0),将 f ( x ) f(x) f(x) x 0 x_{0} x0处的右导数记为 f + ′ ( x 0 ) f'_{+}(x_{0}) f+(x0)
f ( x ) f(x) f(x)的导函数 f ′ ( x ) f'(x) f(x) x 0 x_{0} x0处的两侧极限定义分别如下
f ′ ( x 0 + ) = lim ⁡ x → x 0 + f ′ ( x ) f^{\prime}(x_{0}^{+})= \lim _{x \rightarrow x_{0}^{+}}f^{\prime}(x) f(x0+)=limxx0+f(x)
f ′ ( x 0 − ) = lim ⁡ x → x 0 − f ′ ( x ) f^{\prime}(x_{0}^{-})= \lim _{x \rightarrow x_{0}^{-}}f^{\prime}(x) f(x0)=limxx0f(x)
从定义不难知道导数本质上是一个极限,而导函数在某一点的极限,本质上是导函数的一个极限,而导函数本身又是通过极限定义的,所以可以看成是两个极限
我曾一直认为这二者相等,但事实上这两者是完全不同的概念,这里举一个高数中非常经典的反例
f ( x ) = { x 2 sin ⁡ 1 x , x ≠ 0 0 , x = 0 f ( x ) = \{ \begin{array} { l } { x ^ { 2 } \sin \frac { 1 } { x } , x \neq 0 } \\ { 0 , x = 0 } \end{array} f(x)={x2sinx1,x=00,x=0
#这里我们分别求出它在0处的左右导数以及其导函数在0点的左右极限
f + ( 0 ) = lim ⁡ x → 0 + f ( x ) − f ( 0 ) x = lim ⁡ x → 0 + x sin ⁡ 1 x = 0 f _ { + } ( 0 ) = \lim _ { x \rightarrow 0 ^ { + } } \frac { f ( x ) - f ( 0 ) } { x } = \lim _ { x \rightarrow 0 ^ { + } } x \sin \frac { 1 } { x } = 0 f+(0)=limx0+xf(x)f(0)=limx0+xsinx1=0
f − ( 0 ) = lim ⁡ x → 0 − f ( x ) − f ( 0 ) x = lim ⁡ x → 0 − x sin ⁡ 1 x = 0 f _ { - } ( 0 ) = \lim _ { x \rightarrow 0 ^ { - } } \frac { f ( x ) - f ( 0 ) } { x } = \lim _ { x \rightarrow 0 ^ { - } } x \sin \frac { 1 } { x } = 0 f(0)=limx0xf(x)f(0)=limx0xsinx1=0
x ≠ 0 x \neq 0 x=0时, f ′ ( x ) = 2 x sin ⁡ 1 x − cos ⁡ 1 x f '( x ) = 2 x \sin \frac { 1 } { x } - \cos \frac { 1 } { x } f(x)=2xsinx1cosx1
f ′ ( 0 + ) = lim ⁡ x → 0 + f ′ ( x ) = lim ⁡ x → 0 + ( 2 x sin ⁡ 1 x − cos ⁡ 1 x ) = 不存在 f '( 0 ^ { + } ) = \lim _ { x \rightarrow 0 ^ { + } } f ^ { \prime } ( x ) = \lim _ { x \rightarrow 0 ^ { + } } ( 2 x \sin \frac { 1 } { x } - \cos \frac { 1 } { x } ) =不存在 f(0+)=limx0+f(x)=limx0+(2xsinx1cosx1)=不存在
f ′ ( 0 − ) = lim ⁡ x → 0 − f ′ ( x ) = lim ⁡ x → 0 − ( 2 x sin ⁡ 1 x − cos ⁡ 1 x ) = 不存在 f ^ { \prime } ( 0 ^ { - } ) = \lim _ { x \rightarrow 0 ^ { - } } f ^ { \prime } ( x ) = \lim _ { x \rightarrow 0 ^ { - } } ( 2 x \sin \frac { 1 } { x } - \cos \frac { 1 } { x } ) =不存在 f(0)=limx0f(x)=limx0(2xsinx1cosx1)=不存在
可见,对于这个分段函数,分段点的导数和导数在分段点的极限并不相等,这就说明了我以前用这种方式做题能做对仅仅是运气好,并不是所有函数的单侧导数都和导函数的单侧极限相等,或者说,要满足这个性质是需要条件的,这就引入了导数极限定理

导数极限定理

● 函数 f ( x ) f(x) f(x) x 0 x_{0} x0的邻域 U ( x 0 ) U(x_{0}) U(x0)内连续
● 函数 f ( x ) f(x) f(x) x 0 x_{0} x0的去心邻域 U ˚ ( x 0 ) \mathring{U}(x_{0}) U˚(x0)内可导
lim ⁡ x → x 0 f ′ ( x ) \lim _ { x \rightarrow x _ { 0 } } f '( x ) limxx0f(x)存在
如果满足以上三个条件,则 f ( x ) f(x) f(x) x 0 x_{0} x0可导,且且 f ′ ( x 0 ) = lim ⁡ x → x 0 f ′ ( x ) f ^ { \prime } ( x _ { 0 } ) = \lim _ { x \rightarrow x _ { 0 } } f' ( x ) f(x0)=limxx0f(x)
简而言之,要让函数的单侧导数等于导函数的单侧极限,原函数必须在邻域内连续,去心邻域内可导,并且导函数的极限要存在
去心邻域内可导很好验证,因为左右导数既然可以求出导函数,那么在其导函数有定义的点必然是可导的,而对导函数极限存在也很好验证,因为我们的结论本身就要对导函数求极限,关键在于没有考虑到连续性问题

导数极限定理的证明

任取 x ∈ U ˚ + ( x 0 ) x \in \mathring{U}_{+}(x_{0}) xU˚+(x0),根据条件,必然有 f ( x ) f(x) f(x) ( x , x 0 ) (x,x_{0}) (x,x0)可导,在 [ x , x 0 ] [x,x_{0}] [x,x0]内连续,根据拉格朗日中值定理,必然存在一点 ξ ∈ ( x 0 , x ) \xi\in(x_{0},x) ξ(x0,x)
f ( x ) − f ( x 0 ) x − x 0 = f ′ ( ξ )          ( 1 ) \frac { f ( x ) - f ( x _ { 0 } ) } { x - x _ { 0 } } = f ^ { \prime } (\xi )\ \ \ \ \ \ \ \ (1) xx0f(x)f(x0)=f(ξ)        (1)
由于 ξ ∈ ( x 0 , x ) \xi\in(x_{0},x) ξ(x0,x) x 0 < ξ < x x _ { 0 } \lt \xi \lt x x0<ξ<x,当 x → x 0 x \to x_{0} xx0时,根据夹逼准则,有 ξ → x 0 \xi \to x_{0} ξx0
此时对(1)式左右两边同时取 x → x 0 x \to x_{0} xx0的极限
f + ′ ( x 0 ) = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 + f ′ ( ξ ) = f ′ ( x 0 + )          ( 2 ) f'_{+}(x_{0})=\lim _ { x \rightarrow x _ { 0 }^{+} } \frac { f ( x ) - f ( x _ { 0 } ) } { x - x _ { 0 } } = \lim _ { x \rightarrow x_{0}^{+} } f' ( \xi ) = f '( x^{+} _ { 0 } )\ \ \ \ \ \ \ \ (2) f+(x0)=limxx0+xx0f(x)f(x0)=limxx0+f(ξ)=f(x0+)        (2)
同理可得 f − ′ ( x 0 ) = f ′ ( x 0 − )          ( 3 ) f'_{-}(x_{0})= f '( x^{-} _ { 0 } )\ \ \ \ \ \ \ \ (3) f(x0)=f(x0)        (3)
由于 lim ⁡ x → x 0 f ′ ( x ) \lim _ { x \rightarrow x _ { 0 } } f '( x ) limxx0f(x)存在,设 lim ⁡ x → x 0 f ′ ( x ) = k \lim _ { x \rightarrow x _ { 0 } } f '( x ) = k limxx0f(x)=k,由于 极限存在,即左极限等于右极限,有 f ′ ( x 0 + ) = f ′ ( x 0 − ) = k f'(x_{0}^{+})= f '( x^{-} _ { 0 } ) = k f(x0+)=f(x0)=k
又由于(2)和(3),有 f + ′ ( x 0 ) = f − ′ ( x 0 ) = k f '_ { + } ( x _ { 0 } ) = f' _ { - } ( x _ { 0 } ) = k f+(x0)=f(x0)=k从而有 f ′ ( x 0 ) = k f'(x_{0})=k f(x0)=k

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值