数学分析 导数与微分(第5章)

一.导数
1.定义
(1)2个与导数相联系的问题:

–i.瞬时速度:
平均速度 v ˉ = s ( t ) − s ( t 0 ) t − t 0 \bar{v}=\frac{s(t)-s(t_0)}{t-t_0} vˉ=tt0s(t)s(t0)
瞬时速度 v = lim ⁡ t → t 0 s ( t ) − s ( t 0 ) t − t 0 v=\displaystyle \lim_{t \to t_0}{\frac{s(t)-s(t_0)}{t-t_0}} v=tt0limtt0s(t)s(t0)

–ii切线的斜率:
割线的斜率 k ˉ = f ( x ) − f ( x 0 ) x − x 0 \bar{k}=\frac{f(x)-f(x_0)}{x-x_0} kˉ=xx0f(x)f(x0)
切线的斜率 k = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 k=\displaystyle \lim_{x \to x_0}{\frac{f(x)-f(x_0)}{x-x_0}} k=xx0limxx0f(x)f(x0)

(2)导数的定义:
在这里插入图片描述
(3)有限增量公式:

在这里插入图片描述
在这里插入图片描述
由公式(5)可推得定理5.1:若函数f在点x0处可导,则f在x0处连续

(4)单侧导数:

在这里插入图片描述
类似单侧极限与极限的关系,有定理5.2:
y = f ( x ) y=f(x) y=f(x)在某 U ( x 0 ) U(x_0) U(x0)上有定义,则 f ′ ( x 0 ) f'(x_0) f(x0)存在的充要条件是: f + ′ ( x 0 ) , f − ′ ( x 0 ) f'_+(x_0),f'_-(x_0) f+(x0),f(x0)均存在,且 f + ′ ( x 0 ) = f − ′ ( x 0 ) f'_+(x_0)=f'_-(x_0) f+(x0)=f(x0)

导函数的左(右)极限与左(右)导数
在这里插入图片描述

2.导函数:
在这里插入图片描述
在这里插入图片描述
3.导数的几何意义
(1)几何意义:切线的斜率
在这里插入图片描述
(2)极值点:
在这里插入图片描述
(3)费马定理(定理5.3)与驻点:

设函数f在某U(x0)上有定义,且在x0处可导;若x0为f的极值点,则必由 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0
在这里插入图片描述
证明:
在这里插入图片描述

二.求导法则

总结:
( u ± v ) ′ = u ′ ± v ′ (u±v)'=u'±v' (u±v)=u±v
②(uv)’=u’v+uv’
\quad 特别地,当v=c(c为常数), ( c u ) ′ = c u ′ (cu)'=cu' (cu)=cu
( u v ) ′ = u ′ v − u v ′ v 2 (\frac{u}{v})'=\frac{u'v-uv'}{v^2} (vu)=v2uvuv
\quad 特别地,当u=1, ( 1 v ) ′ = − v ′ v 2 (\frac{1}{v})'=-\frac{v'}{v^2} (v1)=v2v
④反函数导数: d y d x = 1 d x d y \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} dxdy=dydx1
⑤复合函数导数: d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=\frac{dy}{du}·\frac{du}{dx} dxdy=dudydxdu

1.导数的四则运算:

定理5.4:若 u ( x ) , v ( x ) u(x),v(x) u(x),v(x)在x0处可导,则 f ( x ) = u ( x ) ± v ( x ) f(x)=u(x)±v(x) f(x)=u(x)±v(x)在x0处可导,且 f ′ ( x 0 ) = u ′ ( x 0 ) ± v ′ ( x 0 ) 公 式 ( 1 ) f'(x_0)=u'(x_0)±v'(x_0)\qquad公式(1) f(x0)=u(x0)±v(x0)(1)
在这里插入图片描述
定理5.5:若 u ( x ) , v ( x ) u(x),v(x) u(x),v(x)在x0处可导,则 f ( x ) = u ( x ) ⋅ v ( x ) f(x)=u(x)·v(x) f(x)=u(x)v(x)在x0处可导,且 f ′ ( x 0 ) = u ′ ( x 0 ) ⋅ v ( x 0 ) + v ′ ( x 0 ) ⋅ u ( x 0 ) 公 式 ( 2 ) f'(x_0)=u'(x_0)·v(x_0)+v'(x_0)·u(x_0)\qquad公式(2) f(x0)=u(x0)v(x0)+v(x0)u(x0)(2)
\quad 利用数学归纳法可将定理5.5推广到任意有限个函数乘积的情况,如:(uvw)’=u’vw+uv’w+uvw’
推论:若 v ( x ) v(x) v(x)在x0处可导,c为常数,则 ( c ⋅ v ( c ) ) x = x 0 ′ = c ⋅ v ′ ( x 0 ) 公 式 ( 3 ) (c·v(c))'_{x=x_0}=c·v'(x_0)\qquad公式(3) (cv(c))x=x0=cv(x0)(3)
在这里插入图片描述
定理5.6:若 u ( x ) , v ( x ) u(x),v(x) u(x),v(x)在x0处可导,且 v ( x 0 ) ≠ 0 v(x_0)≠0 v(x0)=0,则 f ( x ) = u ( x ) v ( x ) f(x)=\frac{u(x)}{v(x)} f(x)=v(x)u(x)在x0也可导,且 f ′ ( x 0 ) = u ′ ( x 0 ) ⋅ v ( x 0 ) − u ( x 0 ) ⋅ v ′ ( x 0 ) [ v ( x 0 ) 2 ] 公 式 ( 4 ) f'(x_0)=\frac{u'(x_0)·v(x_0)-u(x_0)·v'(x_0)}{[v(x_0)^2]}\qquad公式(4) f(x0)=[v(x0)2]u(x0)v(x0)u(x0)v(x0)(4)
在这里插入图片描述

2.反函数的导数

定理5.7:设 y = f ( x ) y=f(x) y=f(x) x = φ ( x ) x=φ(x) x=φ(x)的反函数,若 φ ( y ) φ(y) φ(y)在某U(y0)上连续,严格单调且 φ ( y 0 ) ≠ 0 φ(y_0)≠0 φ(y0)=0,则f(x)在 x 0 ( x 0 = φ ( y 0 ) ) x_0(x_0=φ(y_0)) x0(x0=φ(y0))处可导,且 f ′ ( x 0 ) = 1 φ ′ ( y 0 ) 公 式 ( 6 ) f'(x_0)=\frac{1}{φ'(y_0)}\qquad公式(6) f(x0)=φ(y0)1(6)
在这里插入图片描述
注意:利用公式(6)求得的导函数是关于y的函数,需要再带入 y = f ( x ) y=f(x) y=f(x)才能得到最终结果

3.复合函数的导数
(1)引理:

f ( x ) f(x) f(x)在x0处可导的充要条件是:在某U(x0)上,∃1个在x0处连续的函数 H ( x ) H(x) H(x),使 f ( x ) − f ( x 0 ) = H ( x ) ( x − x 0 ) f(x)-f(x_0)=H(x)(x-x_0) f(x)f(x0)=H(x)(xx0),从而 f ′ ( x 0 ) = H ( x 0 ) f'(x_0)=H(x_0) f(x0)=H(x0)
在这里插入图片描述
引理说明x0 g ( x ) = f ( x ) − f ( x 0 ) x − x 0 g(x)=\frac{f(x)-f(x_0)}{x-x_0} g(x)=xx0f(x)f(x0)的可去间断点的充要条件是f(x)在x0处可导,这个结论可以推广到向量函数的导数

(2)定理5.8:

u = φ ( x ) u=φ(x) u=φ(x)在x0处可导,y=f(u)在点u0=φ(x0)可导,则复合函数f○φ在x0可导,且 ( f ○ φ ) ′ ( x 0 ) = f ′ ( u 0 ) ⋅ φ ′ ( x 0 ) = f ′ ( φ ( x 0 ) ) φ ′ ( x 0 ) 公 式 ( 7 ) (f○φ)'(x_0)=f'(u_0)·φ'(x_0)=f'(φ(x_0))φ'(x_0)\qquad公式(7) (fφ)(x0)=f(u0)φ(x0)=f(φ(x0))φ(x0)(7)
在这里插入图片描述
在这里插入图片描述
说明:公式(7)也被称为链式法则,y=f(u),u=φ(x)的复合函数在x的求导公式一般写作 d y d x = d y d u ⋅ d u d x 公 式 ( 8 ) \frac{dy}{dx}=\frac{dy}{du}·\frac{du}{dx}\qquad公式(8) dxdy=dudydxdu(8)对于由多个函数复合而得到的复合函数,其导数公式可通过反复应用公式(8)得到
注意:区分 f ′ ( φ ( x ) ) = f ′ ( u ) ∣ u = φ ( x ) f'(φ(x))=f'(u)|_{u=φ(x)} f(φ(x))=f(u)u=φ(x) ( f ( φ ) ) ) ′ = f ′ ( φ ( x ) ) ⋅ φ ′ ( x ) (f(φ)))'=f'(φ(x))·φ'(x) (f(φ)))=f(φ(x))φ(x)的含义:前者表示f对u的导数,其中u=φ(x);后者表示复合函数f○φ对x的导数

4.基本初等函数导数公式:

( c ) ′ = 0 ( c 为 常 数 ) (c)'=0(c为常数) (c)=0(c)
在这里插入图片描述
( x α ) ′ = α ⋅ x α − 1 ( α 为 ∀ 实 数 ) (x^α)'=α·x^{α-1}(α为∀实数) (xα)=αxα1(α)
在这里插入图片描述
在这里插入图片描述
( s i n x ) ′ = c o s x , ( c o s x ) ′ = − s i n x , ( t a n x ) ′ = s e c 2 x , ( c o t x ) ′ = − c s c 2 x , ( s e c x ) ′ = s e c x ⋅ t a n x , ( c s c x ) ′ = − c s c x ⋅ c o t x (sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec^2x,(cotx)'=-csc^2x,(secx)'=secx·tanx,(cscx)'=-cscx·cotx (sinx)=cosx,(cosx)=sinx,(tanx)=sec2x,(cotx)=csc2x,(secx)=secxtanx,(cscx)=cscxcotx
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
( a r c s i n x ) ′ = 1 1 − x 2 , ( a r c c o s x ) ′ = − 1 1 − x 2 , ( a r c t a n x ) ′ = 1 1 + x 2 , ( a r c c o t x ) ′ = − 1 1 + x 2 (arcsinx)'=\frac{1}{\sqrt{1-x^2}},(arccosx)'=-\frac{1}{\sqrt{1-x^2}},(arctanx)'=\frac{1}{1+x^2},(arccotx)'=-\frac{1}{1+x^2} (arcsinx)=1x2 1,(arccosx)=1x2 1,(arctanx)=1+x21,(arccotx)=1+x21
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
( a x ) ′ = a x ⋅ l n a ( a > 0 且 a ≠ 1 ) (a^x)'=a^x·lna(a>0且a≠1) (ax)=axlna(a>0a=1)
特 别 地 , ( e x ) ′ = e x \quad特别地,(e^x)'=e^x ,(ex)=ex
在这里插入图片描述
( l o g a ∣ x ∣ ) ′ = 1 x l n a ( a > 0 且 a ≠ 1 ) (log_a|x|)'=\frac{1}{xlna}(a>0且a≠1) (logax)=xlna1(a>0a=1)
特 别 地 , ( l n ∣ x ∣ ) ′ = 1 x \quad特别地,(ln|x|)'=\frac{1}{x} ,(lnx)=x1
在这里插入图片描述
在这里插入图片描述

5.参变量函数的导数:

设有方程组 { x = φ ( t ) y = ψ ( t ) α ≤ t ≤ β {\begin{cases}x=φ(t)\\y=\psi(t)\end{cases}}{\qquadα≤t≤β} {x=φ(t)y=ψ(t)αtβ若φ(t), ψ ( t ) \psi(t) ψ(t)均可导,φ’(t)≠0且x=φ(t)有反函数t=φ-1(x),则有 d y d x = d y d t ⋅ d t d x = d y d t d x d t = ψ ′ ( t ) φ ( t ) \frac{dy}{dx}=\frac{dy}{dt}·\frac{dt}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{ψ'(t)}{φ(t)} dxdy=dtdydxdt=dtdxdtdy=φ(t)ψ(t)
在这里插入图片描述
在这里插入图片描述

三.高阶导数
1.定义:
在这里插入图片描述
2.运算法则:

对加减法: [ u ± v ] ( n ) = u ( n ) ± v ( n ) [u±v]^{(n)}=u^{(n)}±v^{(n)} [u±v](n)=u(n)±v(n)
对乘法(莱布尼兹公式): ( u ⋅ v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (u·v)^{(n)}=\displaystyle \sum^{n}_{k= 0}{C^k_nu^{(n-k)}v^{(k)}} (uv)(n)=k=0nCnku(nk)v(k),其中 u ( 0 ) = u , v ( 0 ) = v u^{(0)}=u,v^{(0)}=v u(0)=u,v(0)=v
在这里插入图片描述
四.微分
1.可微与微分
(1)概念:
在这里插入图片描述

(2)几何解释:
在这里插入图片描述
2.可微的条件:

定理5.9:函数f在x0处可微的充要条件是:f在x0处可导,其(1)式中的 A = f ′ ( x 0 ) A=f'(x_0) A=f(x0)
在这里插入图片描述
3.可微函数与微商:
在这里插入图片描述
在这里插入图片描述
3.微分的运算法则:
由导数与微分的关系可得:
d [ u ( x ) ± v ( x ) ] = d u ( x ) ± d v ( x ) d[u(x)±v(x)]=du(x)±dv(x) d[u(x)±v(x)]=du(x)±dv(x)
d [ u ( x ) ⋅ v ( x ) ] = v ( x ) d u ( x ) + u ( x ) d v ( x ) d[u(x)·v(x)]=v(x)du(x)+u(x)dv(x) d[u(x)v(x)]=v(x)du(x)+u(x)dv(x)
d [ u ( x ) v ( x ) ] = v ( x ) d u ( x ) − u ( x ) d v ( x ) v 2 ( x ) ( v ( x ) ≠ 0 ) d[\frac{u(x)}{v(x)}]=\frac{v(x)du(x)-u(x)dv(x)}{v^2(x)}(v(x)≠0) d[v(x)u(x)]=v2(x)v(x)du(x)u(x)dv(x)(v(x)=0)
d [ f ○ g ( x ) ] = f ′ ( u ) ⋅ g ′ ( x ) d x , 其 中 u = g ( x ) d[f○g(x)]=f'(u)·g'(x)dx,其中u=g(x) d[fg(x)]=f(u)g(x)dx,u=g(x)

4.一阶微分形式的不变形:
在这里插入图片描述
5.高阶微分:
(1)概念:
在这里插入图片描述
在这里插入图片描述
(2)高阶微分不具有形式的不变性:
在这里插入图片描述

x为自变量时仍可写为 d 2 y = f ′ ′ ( x ) d x 2 + f ′ ( x ) d 2 x d^2y=f''(x)dx^2+f'(x)d^2x d2y=f(x)dx2+f(x)d2x,并且此时x=x(或x=t),故 d 2 x = 0 d^2x=0 d2x=0,故 d 2 y = f ′ ′ ( x ) d x 2 d^2y=f''(x)dx^2 d2y=f(x)dx2;同理,当 x = c ⋅ t x=c·t x=ct,也具有微分的形式不变形
可以理解为:用 φ ′ ( t ) d t φ'(t)dt φ(t)dt近似dx时,会产生1个 o ( Δ t ) o(\Delta t) o(Δt)的误差,但 φ ′ ( t ) d t φ'(t)dt φ(t)dt仍被作为dx使用,求高阶微分时不能忽略由此产生的误差,因为此时的误差至多为 o [ ( Δ t ) 2 ] o[(\Delta t)^2] o[(Δt)2]
在这里插入图片描述

6.微分在近似计算中的应用
(1)函数的近似计算:
在这里插入图片描述
在这里插入图片描述
(2)误差估计:
在这里插入图片描述

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值