数学分析(六)-微分中值定理及其应用1-2-拉格朗日中值定理3-推论3-导数极限定理1:设函数f满足①在U(x₀)上连续;②在U°(x₀)上可导;③limf´(x)存在,则f在x₀可导,且为极限值】

本文介绍了拉格朗日中值定理和导数极限定理。拉格朗日中值定理指出,如果函数在闭区间上连续,在开区间上可导,那么至少存在一点使导数值等于平均变化率。导数极限定理证明了函数在某点可导的充分条件是其导数的极限存在,并等于该点的导数值。
摘要由CSDN通过智能技术生成

定理 6.2 (拉格朗日 (Lagrange) 中值定理)

若函数 f f f 满足如下条件:

  • (i) f f f 在闭区间 [ a , b ] [a, b] [a,b] 上连续;
  • (ii) f f f 在开区间 ( a , b ) (a, b) (a,b) 上可导,

则在 ( a , b ) (a, b) (a,b) 上至少存在一点 ξ \xi ξ, 使得

f ′ ( ξ ) = f ( b ) − f ( a ) b − a ( 2 ) f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} \quad\quad(2) f(ξ)=baf(b)f(a)(2)


推论 3 (导数极限定理)

设函数 f f f 满足以下3个条件:

  1. 在点 x 0 x_{0} x0 的邻域 U ( x 0 ) U\left(x_{0}\right) U(x0) 上连续,
  2. 在 点 x 0 x_{0} x0 的去心邻域 U ∘ ( x 0 ) U^{\circ}\left(x_{0}\right) U(x0) 上可导,
  3. 且极限 lim ⁡ x → x 0 f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值