控制体积分形式的基本方程

本文深入探讨控制体分析法,详细阐述了质量守恒、牛顿第二定律、动量矩定理、热力学第一定律的基本方程,并推导了输运公式。内容涵盖直线和任意加速运动的动量方程,伯努利方程的应用,以及积分形式的动量矩定理,特别讨论了旋转控制体方程和热力学第一定律在惯性控制体中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4.1系统的基本方程

控制体分析法

建立控制体方程的2种方法:

  1. 从控制体上基本定律的文字表述入手,进而获得基本定律的数学表达式
  2. 建立一个通用的公式来描述质量、动量、角动量、热力学能、熵等五大定律的五个基本量,这可以节省计算空间和时间。

4.1.1 质量守恒定律

系统的质量为M常数,写成变化率的形式:

4.1.2 牛顿第二定律

写成变化率的形式:惯性坐标系中运动的系统,作用于系统上所有的外力等于系统动量随时间的变化率。


4.1.3动量矩定理

角动量的变化率等于作用于系统上的所有外力矩之和,即,系统所受的合外力矩为0时,其角动量保持不变。


4.1.4 热力学第一定律

系统从环境吸热,传热速率为正值;环境对系统做功时,做功速率为正值。

4.1.5热力学第二定律


4.2输运公式

强度性质——与系统中所含物质的质量无关,无加和性(如P,T等)

广度性质——与系统中所含物质的质量有关,有加和性(如V,U等)

系统的某一广度性质,除以另外一个广度性质,特别是除以系统的量,就转化成了强度性质。

输运公式:

质量守恒定律

牛顿第二定律

动量矩定理

热力学第一定律

热力学第二定律:

### 动量方程在流力学中的重要性 动量方程是描述流运动的核心之一,在计算流力学(CFD)中起着至关重要的作用。它基于牛顿第二定律,表示单位时间内施加在一个控制体积上的力等于该控制体积内动量的变化率[^1]。 #### 动量方程形式 动量方程通常为两种主要形式:积形式和微形式。 - **积形式**:适用于有限控制模型,表达的是整个区域内动量守恒的关系。对于固定的控制,其基本形式为: \[ \frac{d}{dt} \int_{V_c} \rho \vec{v} dV + \oint_{S_c} (\rho \vec{v} \cdot \vec{n}) \vec{v} dA = \sum F \] 其中 \( V_c \) 表示控制体积,\( S_c \) 是控制表面,\( \rho \) 是密度,\( \vec{v} \) 是速度矢量,\( \vec{n} \) 是外法向矢量,而 \( \sum F \) 则代表作用在控制上的总力。 - **微形式**:适用于无限小的流微元,能够更精确地捕捉局部变化规律。其一般形式如下所示: ```math \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v}\right) = -\nabla p + \mu\nabla^2\vec{v} + \vec{f} ``` 这里 \( p \) 为压力场,\( \mu \) 是动态粘度系数,\( \vec{f} \) 表示其他外部体积力(如重力)。此方程包含了惯性项、压力梯度项、粘性扩散项以及外部力的作用。 #### 数值方法的应用 为了利用计算机求解上述复杂的偏微方程组,需采用数值离散化技术将其转化为代数方程组。常见的离散方式包括但不限于有限差法(FDM),有限体积法(FVM),有限元法(FEM)[^2]。每种方法都有各自的特点与适用范围;例如FVM因其天然保持全局质量和动量守恒特性而在CFD领域尤为流行。 #### 湍流处理 当涉及湍流现象时,原始Navier-Stokes方程变得极其复杂难以直接求解。因此引入各种简化假设和技术手段形成不同的湍流模型来近似真实情况。比如RANS(Reynolds-Averaged Navier Stokes equations)配合k-\epsilon模型就是一种广泛应用的技术路线[^3]。 ```python def solve_momentum_equation(rho, v_prev, dt, dx, dy, dz, mu, f_ext): """ A simple numerical solver for momentum equation using finite difference method. Parameters: rho (float): Density of fluid v_prev (ndarray): Velocity field at previous time step dt (float): Time step size dx,dy,dz (floats): Spatial grid sizes in three dimensions mu (float): Dynamic viscosity coefficient f_ext (function or ndarray): External force term Returns: ndarray: Updated velocity field after one iteration """ import numpy as np # Initialize new velocity array with same shape as input v_new = np.zeros_like(v_prev) # Apply central differencing scheme to approximate derivatives... laplacian_v = ... # Placeholder for actual implementation details omitted here. # Update rule based on simplified form of momentum eqution without pressure gradient etc. v_new[:] = v_prev[:] + dt * (-laplacian_v + f_ext / rho) return v_new ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值