一、理论介绍
Kepler方程是轨道力学中的一个非常著名的方程。它是由约翰内斯·开普勒(Johannes Kepler)于 1609 年在他的《新星天文学》(Astronomia nova)第 60 章中导出的,之后开普勒在他的《哥白尼天文学概要》( Epitome of Copernican Astronomy)的第五卷中提出了该方程的迭代解。其方程形式为:
E − e s i n E = M e (1) E-esinE=M_e \tag{1} E−esinE=Me(1)其中, M M M是平近点角, E E E为偏近点角, e e e为轨道偏心率。
a) 平近点角 M M M:将 T T T定义为特定物体完成一个轨道所需的时间。在时间 T T T内,半径矢量扫过 2 π 2\pi 2π 弧度,即 360°。平均扫描速率 n n n为:
n = 2 π T = μ a 3 (2) n=\frac{2\pi}{T}=\sqrt{\frac{\mu}{a^3}} \tag{2} n=T2π=a3μ(2) M