关于真空中无源波动方程的理解

本文是作者复习电磁场知识时,对真空无源波动方程的理解和推导过程的记录。通过麦克斯韦方程组,探讨了旋度的旋度、散度的梯度和拉普拉斯算子之间的关系,讨论了自由空间中电场的散度为零如何导致波动方程的形成,并提出了对完整推导过程的疑问。
摘要由CSDN通过智能技术生成

最近在复习电磁场的有关知识,想要记录一下学习体会。

今天看了时变电磁场的有关章节,里边讲到了真空中的无源波动方程。我们回顾一下它的推到过程。

首先,该公式肯定是由麦克斯韦方程组得出的,所以我们先来写出真空条件下的麦克斯韦第一第二方程:
在这里插入图片描述
然后对二式左右两边同时取旋度,得到:
在这里插入图片描述
再然后就需要用到矢量恒等式了。由于一些矢量恒等式我一直没有搞明白,所以今天重点学习一下这部分的内容。
在这里插入图片描述
问:旋度的旋度等于什么?
我一直记不住这个公式,按照网上的说法,它等于散度的梯度减去拉普拉斯算子

旋度的旋度的推到过程
到这里我又有疑问了。

问:散度的梯度和拉普拉斯算子有什么区别?
从外观上看,两者都是一个矢量前边加了两个三角算子。
标量的拉普拉斯算子结果为标量,矢量的拉普拉

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值