最近在复习电磁场的有关知识,想要记录一下学习体会。
今天看了时变电磁场的有关章节,里边讲到了真空中的无源波动方程。我们回顾一下它的推到过程。
首先,该公式肯定是由麦克斯韦方程组得出的,所以我们先来写出真空条件下的麦克斯韦第一第二方程:
然后对二式左右两边同时取旋度,得到:
再然后就需要用到矢量恒等式了。由于一些矢量恒等式我一直没有搞明白,所以今天重点学习一下这部分的内容。
问:旋度的旋度等于什么?
我一直记不住这个公式,按照网上的说法,它等于散度的梯度减去拉普拉斯算子。
到这里我又有疑问了。
问:散度的梯度和拉普拉斯算子有什么区别?
从外观上看,两者都是一个矢量前边加了两个三角算子。
标量的拉普拉斯算子结果为标量,矢量的拉普拉