卷积第一次出现应该是信号系统中系统的时域分析一章,卷积贯穿了系统的时域分析,因此理解了卷积的概念对于理解系统的时域分析至关重要。今天就来看看卷积的来龙去脉,它是怎么被引入的?
先补充一下信号分解的预备知识。
信号的分解方式:直流分量和交流分量;奇分量和偶分量;冲激信号的叠加;实部分量和虚部分量,正交函数分量。
信号分解为冲激信号的叠加的推导过程要知道。因为有了信号可分解为冲激信号的叠加,所以后面才引入卷积积分的概念。(为什么引入卷积?之所以引入卷积,是因为有了冲激)
卷积(convolution)方法的原理就是将信号分解为冲激信号之和,借助系统的冲激响应,从而求解系统对任意激励信号的零状态响应。
理解卷积积分要依赖于三点:
- 输入信号可分解为冲激信号(基本信号)的叠加
- 冲激响应
- 线性时不变系统
由最后的表示式知,卷积的意义就是加权求和。就是将这一大串的求和用数学符号表示。求解系统的零状态响应就输入信号和冲激响应的卷积。
卷积重要的物理意义就是:一个函数(冲激响应)在另一个函数(输入信号)上的加权求和。也可以理解为输入信号的每一个点对输出影响的程度的大小。
为什么要引入冲激响应?
在输入信号的每一个位置,叠加一个冲激响应,就得到了输出信号。这就是冲激响应如此重要的原因。
参考文章:
事实证明,信息爆炸的时代,难得从来都不是某个知识点。