机器学习——决策树实践(预测隐形眼镜类型)

前言

之前把《机器学习实战》这本书的分类部分学完了,想自己动手实践一下,所以从前面的章节开始,慢慢熟悉代码。

今天在学习决策树的时候,发现书中并没有直接给出预测隐形眼镜类型的代码,于是想借着这个机会自己实践一下。

在这过程中我使用原来的一些函数,比如创建决策树的函数,用来对官方给的文件进行分类,会出现

bestFeatLabel = labels[bestFeat]
IndexError: list index out of range

等错误,于是我就开始从头熟悉代码,print单步调试代码,最终得出了结果。

在原始代码上首先需要对文本数据进行编码

编码操作

编码操作是第一步,大家可以直接复制下面的代码看看结果。

我就直接上代码了,这也是我从博客中看到抄过来的

    with open('lenses.txt', 'r') as fr:  # 加载文件
        lenses = [inst.strip().split('\t') for inst in fr.readlines()]  # 处理文件
    lenses_target = []  # 提取每组数据的类别,保存在列表里
    for each in lenses:
        lenses_target.append(each[-1])
    print(lenses)
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate','class']  # 特征标签
    lenses_list = []  # 保存lenses数据的临时列表
    lenses_dict = {}  # 保存lenses数据的字典,用于生成pandas
    for each_label in lensesLabels:  # 提取信息,生成字典
        for each in lenses:
            lenses_list.append(each[lensesLabels.index(each_label)])
        lenses_dict[each_label] = lenses_list
        lenses_list = []
    print(lenses_dict)                                                        #打印字典信息
    lenses_pd = pd.DataFrame(lenses_dict)  # 生成pandas.DataFrame
    print(lenses_pd)  # 打印pandas.DataFrame
    le = LabelEncoder()  # 创建LabelEncoder()对象,用于序列化
    for col in lenses_pd.columns:  # 为每一列序列化
        lenses_pd[col] = le.fit_transform(lenses_pd[col])
    print(lenses_pd)

然后就可以使用创建决策树函数了。

代码

过程我也不多提了,直接上代码,想懂原理的请看我之前写的博客就好了。在这里,会出现我前言里面说过的错误,但通过单步调试,找出了问题所在,并解决了它。原因和解决方法我都写在了相应位置的注释,可以参考一下

# -*- coding: UTF-8 -*-
from math import log
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import operator
import pickle
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import pydotplus
import six


"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
    dataSet - 数据集
Returns:
    shannonEnt - 经验熵(香农熵)
"""
def calcShannonEnt(dataSet):
    numEntires = len(dataSet)                        #返回数据集的行数,样本容量
    labelCounts = {}                                #保存每个标签(Label)出现次数的字典
    for featVec in dataSet:                            #对每组特征向量进行统计
        currentLabel = featVec[-1]                    #提取标签(Label)信息
        if currentLabel not in labelCounts.keys():    #如果标签(Label)没有放入统计次数的字典,添加进去
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1                #Label计数
    shannonEnt = 0.0                                #经验熵(香农熵)
    #print(labelCounts)
    for key in labelCounts:                            #计算香农熵
        #print(key)
        #print(labelCounts[key])
        prob = float(labelCounts[key]) / numEntires    #选择该标签(Label)的概率
        shannonEnt -= prob * log(prob, 2)            #利用公式计算
    return shannonEnt                                #返回经验熵(香农熵)

"""
函数说明:创建测试数据集
Returns:
    dataSet - 数据集
    labels - 分类属性
"""
def createDataSet():
    dataSet = [[0, 0, 0, 0, 'no'],                        #数据集
            [0, 0, 0, 1, 'no'],
            [0, 1, 0, 1, 'yes'],
            [0, 1, 1, 0, 'yes'],
            [0, 0, 0, 0, 'no'],
            [1, 0, 0, 0, 'no'],
            [1, 0, 0, 1, 'no'],
            [1, 1, 1, 1, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [2, 0, 1, 2, 'yes'],
            [2, 0, 1, 1, 'yes'],
            [2, 1, 0, 1, 'yes'],
            [2, 1, 0, 2, 'yes'],
            [2, 0, 0, 0, 'no']]
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']		#分类属性
    return dataSet, labels                             #返回数据集和分类属性

"""
函数说明:按照给定特征划分数据集

Parameters:
    dataSet - 待划分的数据集
    axis - 划分数据集的特征
    value - 需要返回的特征的值
"""
def splitDataSet(dataSet, axis, value):
    retDataSet = []                                        #创建返回的数据集列表
    for featVec in dataSet:                             #遍历数据集
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]                #去掉axis特征
            reducedFeatVec.extend(featVec[axis+1:])     #将符合条件的添加到返回的数据集
            retDataSet.append(reducedFeatVec)
    print("划分后的数据集:", retDataSet)
    return retDataSet                                      #返回划分后的数据集

"""
函数说明:选择最优特征
Parameters:
    dataSet - 数据集
Returns:
    bestFeature - 信息增益最大的(最优)特征的索引值
"""
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1                    #特征数量,-1是因为最后一列是类别标签
    #print("特征数量为:%d" % numFeatures)
    baseEntropy = calcShannonEnt(dataSet)                 #计算数据集的香农熵
    bestInfoGain = 0.0                                  #信息增益
    bestFeature = -1                                    #最优特征的索引值
    for i in range(numFeatures):                         #遍历所有特征
        #获取dataSet的第i个所有特征存到featList中
        featList = [example[i] for example in dataSet]#已用for验证,把dataSet中的每一行的第i个数据放到featList中
        #print(featList)#每个特征的15项特征值列表
        uniqueVals = set(featList)                         #创建set集合{},元素不可重复
        #print(uniqueVals)#去除重复项
        newEntropy = 0.0                                  #经验条件熵
        #把特征项的数据集分开,去除重复项的原因是将第i个特征的数据分离,对这个特征的进行经验熵的计算
        for value in uniqueVals:                         #计算信息增益
            subDataSet = splitDataSet(dataSet, i, value)         #subDataSet划分后的子集
            #print(subDataSet)
            prob = len(subDataSet) / float(len(dataSet))           #计算子集的概率=子集个数除以整个训练集样本个数
            newEntropy += prob * calcShannonEnt(subDataSet)     #根据公式计算经验条件熵
        infoGain = baseEntropy - newEntropy                     #信息增益
        #print("第%d个特征的增益为%.3f" % (i, infoGain))            #打印每个特征的信息增益
        if (infoGain > bestInfoGain):                             #计算信息增益
            bestInfoGain = infoGain                             #更新信息增益,找到最大的信息增益
            bestFeature = i                                     #记录信息增益最大的特征的索引值
    return bestFeature                                             #返回信息增益最大的特征的索引值

"""
函数说明:创建决策树
Parameters:
    dataSet - 训练数据集
    labels - 分类属性标签
    featLabels - 存储选择的最优特征标签
Returns:
    myTree - 决策树
"""
def createTree2(dataSet, labels, featLabels):
    classList = [example[-1] for example in dataSet]            #取分类标签(是否放贷:yes or no)
    #print(len(dataSet[0]))
    if classList.count(classList[0]) == len(classList):            #如果类别完全相同则停止继续划分
        return classList[0]
    if len(dataSet[0]) == 1:                                    #遍历完所有特征时返回出现次数最多的类标签
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)                #选择最优特征
    bestFeatLabel = labels[bestFeat]                            #最优特征的标签
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel:{}}                                    #根据最优特征的标签生成树
    del(labels[bestFeat])                                        #删除已经使用特征标签
    featValues = [example[bestFeat] for example in dataSet]        #得到训练集中所有最优特征的属性值
    uniqueVals = set(featValues)                                #去掉重复的属性值
    for value in uniqueVals:                                    #遍历特征,创建决策树。
        myTree[bestFeatLabel][value] = createTree2(splitDataSet(dataSet, bestFeat, value), labels, featLabels)
    return myTree


"""
函数说明:统计classList中出现此处最多的元素(类标签)
Parameters:
    classList - 类标签列表
Returns:
    sortedClassCount[0][0] - 出现此处最多的元素(类标签)
"""
def majorityCnt(classList):
    classCount = {}
    for vote in classList:                                        #统计classList中每个元素出现的次数
        if vote not in classCount.keys():classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)        #根据字典的值降序排序
    return sortedClassCount[0][0]                                #返回classList中出现次数最多的元素



"""
函数说明:创建决策树
Parameters:
    dataSet - 训练数据集
    labels - 分类属性标签
    featLabels - 存储选择的最优特征标签
Returns:
    myTree - 决策树
"""
def createTree(dataSet, labels, featLabels):
    print("****************************************************")
    print("数据集为:", dataSet)
    classList = [example[-1] for example in dataSet]            #取分类标签(是否放贷:yes or no)
    """
        特征可能存在多个属性,所以在此判断一下,如果类别完全相同则停止继续划分
    """
    if classList.count(0) == len(classList):            #如果类别完全相同则停止继续划分
        print("停止划分0")
        return 0
    elif classList.count(1) == len(classList):
        print("停止划分1")
        return 1
    elif classList.count(2) == len(classList):
        print("停止划分2")
        return 2

    if len(dataSet[0]) == 1:                                    #遍历完所有特征时返回出现次数最多的类标签
        return majorityCnt(classList)

    bestFeat = chooseBestFeatureToSplit(dataSet)                #选择最优特征
    print("最优特征为:%d" % bestFeat)
    bestFeatLabel = labels[bestFeat]                            #最优特征的标签
    print("最优特征的标签:", bestFeatLabel)
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel:{}}                                    #根据最优特征的标签生成树
    print("当前根据最优特征生成的树:", myTree)
    print("准备删除的特征标签为:", labels[bestFeat])
    #如果是到了三个属性的特征值里,那么不能让他就这么把前面没有创建完的特征标签删除了,因为他是从一个属性递归到底再回到另一个属性进行递归
    del (labels[bestFeat])  # 删除已经使用特征标签'age', 'prescript', 'astigmatic', 'tearRate'
    print("labels标签里还有:", labels)
    featValues = [example[bestFeat] for example in dataSet]        #得到训练集中所有最优特征的属性值
    print("得到训练集中最优特征的属性值:", featValues)
    uniqueVals = set(featValues)                                #去掉重复的属性值
    print("去掉重复属性:", uniqueVals)
    for value in uniqueVals:     #0/1/2                               遍历特征,创建决策树。
        if len(uniqueVals) == 3:
            print("***************************************************************************************三个属性的第", value)
        subLabels = labels[:]
        """
        我在没有加subLabels = labels[:]的时候,会报如下错误:       
            bestFeatLabel = labels[bestFeat]                            #最优特征的标签
            IndexError: list index out of range
        经过单步调试与print结果,才发现:
        当我输入数据中的特征存在不止2个属性的时候,在递归内每次都会删除已经使用的标签,这就可能存在删除一个还没有全部迭代完的属性
        (比如只迭代了0属性到树底,回过头来迭代1属性时,发现已经在迭代到树底过程中就被删除了)
        所以为了防止误删除,我们需要在迭代一个属性时复制所有标签,这样树就不会弄乱现有的标签
        """
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels, featLabels)
        print("当前树:", myTree)
    return myTree

"""
函数说明:获取决策树叶子结点的数目
Parameters:
    myTree - 决策树
Returns:
    numLeafs - 决策树的叶子结点的数目
"""
def getNumLeafs(myTree):
    numLeafs = 0                                                #初始化叶子
    firstStr = next(iter(myTree))                                #python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0]
    secondDict = myTree[firstStr]                                #获取下一组字典
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':                #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs

"""
函数说明:获取决策树的层数
Parameters:
    myTree - 决策树
Returns:
    maxDepth - 决策树的层数
"""
def getTreeDepth(myTree):
    maxDepth = 0                                                #初始化决策树深度
    firstStr = next(iter(myTree))                                #python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0]
    secondDict = myTree[firstStr]                                #获取下一个字典
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':                #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth            #更新层数
    return maxDepth

"""
函数说明:绘制结点
Parameters:
    nodeTxt - 结点名
    centerPt - 文本位置
    parentPt - 标注的箭头位置
    nodeType - 结点格式
"""
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    arrow_args = dict(arrowstyle="<-")                                            #定义箭头格式
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)        #设置中文字体
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',    #绘制结点
        xytext=centerPt, textcoords='axes fraction',
        va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, FontProperties=font)

"""
函数说明:标注有向边属性值
Parameters:
    cntrPt、parentPt - 用于计算标注位置
    txtString - 标注的内容
"""
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]                                            #计算标注位置
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

"""
函数说明:绘制决策树
Parameters:
    myTree - 决策树(字典)
    parentPt - 标注的内容
    nodeTxt - 结点名
"""
def plotTree(myTree, parentPt, nodeTxt):
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")                                        #设置结点格式
    leafNode = dict(boxstyle="round4", fc="0.8")                                            #设置叶结点格式
    numLeafs = getNumLeafs(myTree)                                                          #获取决策树叶结点数目,决定了树的宽度
    depth = getTreeDepth(myTree)                                                            #获取决策树层数
    firstStr = next(iter(myTree))                                                            #下个字典
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)    #中心位置
    plotMidText(cntrPt, parentPt, nodeTxt)                                                    #标注有向边属性值
    plotNode(firstStr, cntrPt, parentPt, decisionNode)                                        #绘制结点
    secondDict = myTree[firstStr]                                                            #下一个字典,也就是继续绘制子结点
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD                                        #y偏移
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':                                            #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            plotTree(secondDict[key],cntrPt,str(key))                                        #不是叶结点,递归调用继续绘制
        else:                                                                                #如果是叶结点,绘制叶结点,并标注有向边属性值
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

"""
函数说明:创建绘制面板
Parameters:
    inTree - 决策树(字典)
"""
def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')                                                    #创建fig
    fig.clf()                                                                                #清空fig
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)                                #去掉x、y轴
    plotTree.totalW = float(getNumLeafs(inTree))                                            #获取决策树叶结点数目
    plotTree.totalD = float(getTreeDepth(inTree))                                            #获取决策树层数
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;                                #x偏移
    plotTree(inTree, (0.5,1.0), '')                                                            #绘制决策树
    plt.show()                                                                                 #显示绘制结果


"""
函数说明:使用决策树分类
Parameters:
    inputTree - 已经生成的决策树
    featLabels - 存储选择的最优特征标签
    testVec - 测试数据列表,顺序对应最优特征标签
Returns:
    classLabel - 分类结果
"""

def classify(inputTree, featLabels, testVec):
    firstStr = next(iter(inputTree))                                                        #获取决策树结点
    print("获取决策树结点:",firstStr)
    secondDict = inputTree[firstStr]                                                        #下一个字典
    print("下一个字典:",secondDict)
    featIndex = featLabels.index(firstStr)#获取存储选择的最优特征标签的索引
    print("获取存储选择的最优特征标签的索引:",featIndex)
    for key in secondDict.keys():#遍历字典的键
        print("字典的键:",key)
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, testVec)
            else: classLabel = secondDict[key]
    return classLabel

"""
函数说明:存储决策树
Parameters:
    inputTree - 已经生成的决策树
    filename - 决策树的存储文件名
"""
def storeTree(inputTree, filename):
    with open(filename, 'wb') as fw:
        pickle.dump(inputTree, fw)


"""
函数说明:读取决策树
Parameters:
    filename - 决策树的存储文件名
Returns:
    pickle.load(fr) - 决策树字典
"""
def grabTree(filename):
    fr = open(filename, 'rb')
    return pickle.load(fr)


if __name__ == '__main__':

    """计算香农熵、条件经验熵、信息增益、选择最优特征
        dataSet, labels = createDataSet()
        print("最优特征索引值:" + str(chooseBestFeatureToSplit(dataSet)))
    """

    """
    dataSet, labels = createDataSet()
    print(dataSet)
    featLabels = []
    myTree = createTree2(dataSet, labels, featLabels)
    print(myTree)
    """

    """可视化决策树
    dataSet, labels = createDataSet()
    featLabels = []
    myTree = createTree(dataSet, labels, featLabels)
    print(myTree)
    createPlot(myTree)
    """

    """决策树进行分类
    dataSet, labels = createDataSet()
    featLabels = []
    myTree = createTree(dataSet, labels, featLabels)
    testVec = [0, 1]  # 测试数据
    result = classify(myTree, featLabels, testVec)
    if result == 'yes':
        print('放贷')
    if result == 'no':
        print('不放贷')
    """

    """
        进行编码
    """
    with open('lenses.txt', 'r') as fr:  # 加载文件
        lenses = [inst.strip().split('\t') for inst in fr.readlines()]  # 处理文件
    lenses_target = []  # 提取每组数据的类别,保存在列表里
    for each in lenses:
        lenses_target.append(each[-1])
    print(lenses)
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate','class']  # 特征标签
    lenses_list = []  # 保存lenses数据的临时列表
    lenses_dict = {}  # 保存lenses数据的字典,用于生成pandas
    for each_label in lensesLabels:  # 提取信息,生成字典
        for each in lenses:
            lenses_list.append(each[lensesLabels.index(each_label)])
        lenses_dict[each_label] = lenses_list
        lenses_list = []
    print(lenses_dict)                                                        #打印字典信息
    lenses_pd = pd.DataFrame(lenses_dict)  # 生成pandas.DataFrame
    print(lenses_pd)  # 打印pandas.DataFrame
    le = LabelEncoder()  # 创建LabelEncoder()对象,用于序列化
    for col in lenses_pd.columns:  # 为每一列序列化
        lenses_pd[col] = le.fit_transform(lenses_pd[col])
    print(lenses_pd)

    featLabels = []
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']  # 特征标签

    myTree = createTree(lenses_pd.values.tolist(), lensesLabels, featLabels)

    print("树结构:",myTree)
    print("存储选择的最优特征标签:",featLabels)
    testVec = [1,1,1,0]  # 测试数据
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']  # 特征标签
    """
    这里我给的参数是lensesLabels
    所以测试数据他是按照你的特征标签给的标准来进行分类的
    
    如果参数给的是featLabels
    那么测试数据他是按照你的树结构来给值才会成功分类
    """
    result = classify(myTree, lensesLabels, testVec)
    if result == 0 :
        print("类型为:hard ")
    elif result == 1:
        print("类型为:no lenses ")
    elif result == 2:
        print("类型为:soft ")

    createPlot(myTree)

这就是全部的代码,中间有许多打印的东西还有许多注释我没有删,主要是懒,看结果就好了,可以通过修改测试数据来得到不同的分类结果。

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
决策树算法是一种广泛应用于分类和回归的机器学习算法,它基于树形结构对样本进行分类或预测决策树算法的主要思想是通过一系列的判断来对样本进行分类或预测。在决策树中,每个节点表示一个属性或特征,每个分支代表该属性或特征的一个取值,而每个叶子节点代表一个分类或预测结果。 决策树算法的训练过程主要包括以下步骤: 1. 特征选择:根据某种指标(如信息增益或基尼系数)选择最优的特征作为当前节点的分裂属性。 2. 决策树生成:根据选择的特征将数据集分成若干个子集,并递归地生成决策树。 3. 剪枝:通过剪枝操作来提高决策树的泛化性能。 决策树算法的优点包括易于理解和解释、计算复杂度较低、对缺失值不敏感等。但是,决策树算法也存在一些缺点,如容易出现过拟合、对离散数据敏感等。 下面是一个决策树算法的案例:假设我们要根据一个人的年龄、性别、教育程度和职业预测其收入水平(高于或低于50K)。首先,我们需要将这些特征进行编码,将其转换为数值型数据。然后,我们可以使用决策树算法对这些数据进行训练,并生成一个决策树模型。最后,我们可以使用该模型对新的数据进行分类或预测。例如,根据一个人的年龄、性别、教育程度和职业,我们可以使用决策树模型预测该人的收入水平。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值