机器学习——决策树实践(预测隐形眼镜类型)

前言

之前把《机器学习实战》这本书的分类部分学完了,想自己动手实践一下,所以从前面的章节开始,慢慢熟悉代码。

今天在学习决策树的时候,发现书中并没有直接给出预测隐形眼镜类型的代码,于是想借着这个机会自己实践一下。

在这过程中我使用原来的一些函数,比如创建决策树的函数,用来对官方给的文件进行分类,会出现

bestFeatLabel = labels[bestFeat]
IndexError: list index out of range

等错误,于是我就开始从头熟悉代码,print单步调试代码,最终得出了结果。

在原始代码上首先需要对文本数据进行编码

编码操作

编码操作是第一步,大家可以直接复制下面的代码看看结果。

我就直接上代码了,这也是我从博客中看到抄过来的

    with open('lenses.txt', 'r') as fr:  # 加载文件
        lenses = [inst.strip().split('\t') for inst in fr.readlines()]  # 处理文件
    lenses_target = []  # 提取每组数据的类别,保存在列表里
    for each in lenses:
        lenses_target.append(each[-1])
    print(lenses)
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate','class']  # 特征标签
    lenses_list = []  # 保存lenses数据的临时列表
    lenses_dict = {}  # 保存lenses数据的字典,用于生成pandas
    for each_label in lensesLabels:  # 提取信息,生成字典
        for each in lenses:
            lenses_list.append(each[lensesLabels.index(each_label)])
        lenses_dict[each_label] = lenses_list
        lenses_list = []
    print(lenses_dict)                                                        #打印字典信息
    lenses_pd = pd.DataFrame(lenses_dict)  # 生成pandas.DataFrame
    print(lenses_pd)  # 打印pandas.DataFrame
    le = LabelEncoder()  # 创建LabelEncoder()对象,用于序列化
    for col in lenses_pd.columns:  # 为每一列序列化
        lenses_pd[col] = le.fit_transform(lenses_pd[col])
    print(lenses_pd)

然后就可以使用创建决策树函数了。

代码

过程我也不多提了,直接上代码,想懂原理的请看我之前写的博客就好了。在这里,会出现我前言里面说过的错误,但通过单步调试,找出了问题所在,并解决了它。原因和解决方法我都写在了相应位置的注释,可以参考一下

# -*- coding: UTF-8 -*-
from math import log
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import operator
import pickle
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import pydotplus
import six


"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
    dataSet - 数据集
Returns:
    shannonEnt - 经验熵(香农熵)
"""
def calcShannonEnt(dataSet):
    numEntires = len(dataSet)                        #返回数据集的行数,样本容量
    labelCounts = {}                                #保存每个标签(Label)出现次数的字典
    for featVec in dataSet:                            #对每组特征向量进行统计
        currentLabel = featVec[-1]                    #提取标签(Label)信息
        if currentLabel not in labelCounts.keys():    #如果标签(Label)没有放入统计次数的字典,添加进去
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1                #Label计数
    shannonEnt = 0.0                                #经验熵(香农熵)
    #print(labelCounts)
    for key in labelCounts:                            #计算香农熵
        #print(key)
        #print(labelCounts[key])
        prob = float(labelCounts[key]) / numEntires    #选择该标签(Label)的概率
        shannonEnt -= prob * log(prob, 2)            #利用公式计算
    return shannonEnt                                #返回经验熵(香农熵)

"""
函数说明:创建测试数据集
Returns:
    dataSet - 数据集
    labels - 分类属性
"""
def createDataSet():
    dataSet = [[0, 0, 0, 0, 'no'],                        #数据集
            [0, 0, 0, 1, 'no'],
            [0, 1, 0, 1, 'yes'],
            [0, 1, 1, 0, 'yes'],
            [0, 0, 0, 0, 'no'],
            [1, 0, 0, 0, 'no'],
            [1, 0, 0, 1, 'no'],
            [1, 1, 1, 1, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [1, 0, 1, 2, 'yes'],
            [2, 0, 1, 2, 'yes'],
            [2, 0, 1, 1, 'yes'],
            [2, 1, 0, 1, 'yes'],
            [2, 1, 0, 2, 'yes'],
            [2, 0, 0, 0, 'no']]
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']		#分类属性
    return dataSet, labels                             #返回数据集和分类属性

"""
函数说明:按照给定特征划分数据集

Parameters:
    dataSet - 待划分的数据集
    axis - 划分数据集的特征
    value - 需要返回的特征的值
"""
def splitDataSet(dataSet, axis, value):
    retDataSet = []                                        #创建返回的数据集列表
    for featVec in dataSet:                             #遍历数据集
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]                #去掉axis特征
            reducedFeatVec.extend(featVec[axis+1:])     #将符合条件的添加到返回的数据集
            retDataSet.append(reducedFeatVec)
    print("划分后的数据集:", retDataSet)
    return retDataSet                                      #返回划分后的数据集

"""
函数说明:选择最优特征
Parameters:
    dataSet - 数据集
Returns:
    bestFeature - 信息增益最大的(最优)特征的索引值
"""
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1                    #特征数量,-1是因为最后一列是类别标签
    #print("特征数量为:%d" % numFeatures)
    baseEntropy = calcShannonEnt(dataSet)                 #计算数据集的香农熵
    bestInfoGain = 0.0                                  #信息增益
    bestFeature = -1                                    #最优特征的索引值
    for i in range(numFeatures):                         #遍历所有特征
        #获取dataSet的第i个所有特征存到featList中
        featList = [example[i] for example in dataSet]#已用for验证,把dataSet中的每一行的第i个数据放到featList中
        #print(featList)#每个特征的15项特征值列表
        uniqueVals = set(featList)                         #创建set集合{},元素不可重复
        #print(uniqueVals)#去除重复项
        newEntropy = 0.0                                  #经验条件熵
        #把特征项的数据集分开,去除重复项的原因是将第i个特征的数据分离,对这个特征的进行经验熵的计算
        for value in uniqueVals:                         #计算信息增益
            subDataSet = splitDataSet(dataSet, i, value)         #subDataSet划分后的子集
            #print(subDataSet)
            prob = len(subDataSet) / float(len(dataSet))           #计算子集的概率=子集个数除以整个训练集样本个数
            newEntropy += prob * calcShannonEnt(subDataSet)     #根据公式计算经验条件熵
        infoGain = baseEntropy - newEntropy                     #信息增益
        #print("第%d个特征的增益为%.3f" % (i, infoGain))            #打印每个特征的信息增益
        if (infoGain > bestInfoGain):                             #计算信息增益
            bestInfoGain = infoGain                             #更新信息增益,找到最大的信息增益
            bestFeature = i                                     #记录信息增益最大的特征的索引值
    return bestFeature                                             #返回信息增益最大的特征的索引值

"""
函数说明:创建决策树
Parameters:
    dataSet - 训练数据集
    labels - 分类属性标签
    featLabels - 存储选择的最优特征标签
Returns:
    myTree - 决策树
"""
def createTree2(dataSet, labels, featLabels):
    classList = [example[-1] for example in dataSet]            #取分类标签(是否放贷:yes or no)
    #print(len(dataSet[0]))
    if classList.count(classList[0]) == len(classList):            #如果类别完全相同则停止继续划分
        return classList[0]
    if len(dataSet[0]) == 1:                                    #遍历完所有特征时返回出现次数最多的类标签
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)                #选择最优特征
    bestFeatLabel = labels[bestFeat]                            #最优特征的标签
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel:{}}                                    #根据最优特征的标签生成树
    del(labels[bestFeat])                                        #删除已经使用特征标签
    featValues = [example[bestFeat] for example in dataSet]        #得到训练集中所有最优特征的属性值
    uniqueVals = set(featValues)                                #去掉重复的属性值
    for value in uniqueVals:                                    #遍历特征,创建决策树。
        myTree[bestFeatLabel][value] = createTree2(splitDataSet(dataSet, bestFeat, value), labels, featLabels)
    return myTree


"""
函数说明:统计classList中出现此处最多的元素(类标签)
Parameters:
    classList - 类标签列表
Returns:
    sortedClassCount[0][0] - 出现此处最多的元素(类标签)
"""
def majorityCnt(classList):
    classCount = {}
    for vote in classList:                                        #统计classList中每个元素出现的次数
        if vote not in classCount.keys():classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)        #根据字典的值降序排序
    return sortedClassCount[0][0]                                #返回classList中出现次数最多的元素



"""
函数说明:创建决策树
Parameters:
    dataSet - 训练数据集
    labels - 分类属性标签
    featLabels - 存储选择的最优特征标签
Returns:
    myTree - 决策树
"""
def createTree(dataSet, labels, featLabels):
    print("****************************************************")
    print("数据集为:", dataSet)
    classList = [example[-1] for example in dataSet]            #取分类标签(是否放贷:yes or no)
    """
        特征可能存在多个属性,所以在此判断一下,如果类别完全相同则停止继续划分
    """
    if classList.count(0) == len(classList):            #如果类别完全相同则停止继续划分
        print("停止划分0")
        return 0
    elif classList.count(1) == len(classList):
        print("停止划分1")
        return 1
    elif classList.count(2) == len(classList):
        print("停止划分2")
        return 2

    if len(dataSet[0]) == 1:                                    #遍历完所有特征时返回出现次数最多的类标签
        return majorityCnt(classList)

    bestFeat = chooseBestFeatureToSplit(dataSet)                #选择最优特征
    print("最优特征为:%d" % bestFeat)
    bestFeatLabel = labels[bestFeat]                            #最优特征的标签
    print("最优特征的标签:", bestFeatLabel)
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel:{}}                                    #根据最优特征的标签生成树
    print("当前根据最优特征生成的树:", myTree)
    print("准备删除的特征标签为:", labels[bestFeat])
    #如果是到了三个属性的特征值里,那么不能让他就这么把前面没有创建完的特征标签删除了,因为他是从一个属性递归到底再回到另一个属性进行递归
    del (labels[bestFeat])  # 删除已经使用特征标签'age', 'prescript', 'astigmatic', 'tearRate'
    print("labels标签里还有:", labels)
    featValues = [example[bestFeat] for example in dataSet]        #得到训练集中所有最优特征的属性值
    print("得到训练集中最优特征的属性值:", featValues)
    uniqueVals = set(featValues)                                #去掉重复的属性值
    print("去掉重复属性:", uniqueVals)
    for value in uniqueVals:     #0/1/2                               遍历特征,创建决策树。
        if len(uniqueVals) == 3:
            print("***************************************************************************************三个属性的第", value)
        subLabels = labels[:]
        """
        我在没有加subLabels = labels[:]的时候,会报如下错误:       
            bestFeatLabel = labels[bestFeat]                            #最优特征的标签
            IndexError: list index out of range
        经过单步调试与print结果,才发现:
        当我输入数据中的特征存在不止2个属性的时候,在递归内每次都会删除已经使用的标签,这就可能存在删除一个还没有全部迭代完的属性
        (比如只迭代了0属性到树底,回过头来迭代1属性时,发现已经在迭代到树底过程中就被删除了)
        所以为了防止误删除,我们需要在迭代一个属性时复制所有标签,这样树就不会弄乱现有的标签
        """
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels, featLabels)
        print("当前树:", myTree)
    return myTree

"""
函数说明:获取决策树叶子结点的数目
Parameters:
    myTree - 决策树
Returns:
    numLeafs - 决策树的叶子结点的数目
"""
def getNumLeafs(myTree):
    numLeafs = 0                                                #初始化叶子
    firstStr = next(iter(myTree))                                #python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0]
    secondDict = myTree[firstStr]                                #获取下一组字典
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':                #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs

"""
函数说明:获取决策树的层数
Parameters:
    myTree - 决策树
Returns:
    maxDepth - 决策树的层数
"""
def getTreeDepth(myTree):
    maxDepth = 0                                                #初始化决策树深度
    firstStr = next(iter(myTree))                                #python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,可以使用list(myTree.keys())[0]
    secondDict = myTree[firstStr]                                #获取下一个字典
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':                #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth            #更新层数
    return maxDepth

"""
函数说明:绘制结点
Parameters:
    nodeTxt - 结点名
    centerPt - 文本位置
    parentPt - 标注的箭头位置
    nodeType - 结点格式
"""
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    arrow_args = dict(arrowstyle="<-")                                            #定义箭头格式
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)        #设置中文字体
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',    #绘制结点
        xytext=centerPt, textcoords='axes fraction',
        va="center", ha="center", bbox=nodeType, arrowprops=arrow_args, FontProperties=font)

"""
函数说明:标注有向边属性值
Parameters:
    cntrPt、parentPt - 用于计算标注位置
    txtString - 标注的内容
"""
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]                                            #计算标注位置
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

"""
函数说明:绘制决策树
Parameters:
    myTree - 决策树(字典)
    parentPt - 标注的内容
    nodeTxt - 结点名
"""
def plotTree(myTree, parentPt, nodeTxt):
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")                                        #设置结点格式
    leafNode = dict(boxstyle="round4", fc="0.8")                                            #设置叶结点格式
    numLeafs = getNumLeafs(myTree)                                                          #获取决策树叶结点数目,决定了树的宽度
    depth = getTreeDepth(myTree)                                                            #获取决策树层数
    firstStr = next(iter(myTree))                                                            #下个字典
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)    #中心位置
    plotMidText(cntrPt, parentPt, nodeTxt)                                                    #标注有向边属性值
    plotNode(firstStr, cntrPt, parentPt, decisionNode)                                        #绘制结点
    secondDict = myTree[firstStr]                                                            #下一个字典,也就是继续绘制子结点
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD                                        #y偏移
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':                                            #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            plotTree(secondDict[key],cntrPt,str(key))                                        #不是叶结点,递归调用继续绘制
        else:                                                                                #如果是叶结点,绘制叶结点,并标注有向边属性值
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

"""
函数说明:创建绘制面板
Parameters:
    inTree - 决策树(字典)
"""
def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')                                                    #创建fig
    fig.clf()                                                                                #清空fig
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)                                #去掉x、y轴
    plotTree.totalW = float(getNumLeafs(inTree))                                            #获取决策树叶结点数目
    plotTree.totalD = float(getTreeDepth(inTree))                                            #获取决策树层数
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;                                #x偏移
    plotTree(inTree, (0.5,1.0), '')                                                            #绘制决策树
    plt.show()                                                                                 #显示绘制结果


"""
函数说明:使用决策树分类
Parameters:
    inputTree - 已经生成的决策树
    featLabels - 存储选择的最优特征标签
    testVec - 测试数据列表,顺序对应最优特征标签
Returns:
    classLabel - 分类结果
"""

def classify(inputTree, featLabels, testVec):
    firstStr = next(iter(inputTree))                                                        #获取决策树结点
    print("获取决策树结点:",firstStr)
    secondDict = inputTree[firstStr]                                                        #下一个字典
    print("下一个字典:",secondDict)
    featIndex = featLabels.index(firstStr)#获取存储选择的最优特征标签的索引
    print("获取存储选择的最优特征标签的索引:",featIndex)
    for key in secondDict.keys():#遍历字典的键
        print("字典的键:",key)
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, testVec)
            else: classLabel = secondDict[key]
    return classLabel

"""
函数说明:存储决策树
Parameters:
    inputTree - 已经生成的决策树
    filename - 决策树的存储文件名
"""
def storeTree(inputTree, filename):
    with open(filename, 'wb') as fw:
        pickle.dump(inputTree, fw)


"""
函数说明:读取决策树
Parameters:
    filename - 决策树的存储文件名
Returns:
    pickle.load(fr) - 决策树字典
"""
def grabTree(filename):
    fr = open(filename, 'rb')
    return pickle.load(fr)


if __name__ == '__main__':

    """计算香农熵、条件经验熵、信息增益、选择最优特征
        dataSet, labels = createDataSet()
        print("最优特征索引值:" + str(chooseBestFeatureToSplit(dataSet)))
    """

    """
    dataSet, labels = createDataSet()
    print(dataSet)
    featLabels = []
    myTree = createTree2(dataSet, labels, featLabels)
    print(myTree)
    """

    """可视化决策树
    dataSet, labels = createDataSet()
    featLabels = []
    myTree = createTree(dataSet, labels, featLabels)
    print(myTree)
    createPlot(myTree)
    """

    """决策树进行分类
    dataSet, labels = createDataSet()
    featLabels = []
    myTree = createTree(dataSet, labels, featLabels)
    testVec = [0, 1]  # 测试数据
    result = classify(myTree, featLabels, testVec)
    if result == 'yes':
        print('放贷')
    if result == 'no':
        print('不放贷')
    """

    """
        进行编码
    """
    with open('lenses.txt', 'r') as fr:  # 加载文件
        lenses = [inst.strip().split('\t') for inst in fr.readlines()]  # 处理文件
    lenses_target = []  # 提取每组数据的类别,保存在列表里
    for each in lenses:
        lenses_target.append(each[-1])
    print(lenses)
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate','class']  # 特征标签
    lenses_list = []  # 保存lenses数据的临时列表
    lenses_dict = {}  # 保存lenses数据的字典,用于生成pandas
    for each_label in lensesLabels:  # 提取信息,生成字典
        for each in lenses:
            lenses_list.append(each[lensesLabels.index(each_label)])
        lenses_dict[each_label] = lenses_list
        lenses_list = []
    print(lenses_dict)                                                        #打印字典信息
    lenses_pd = pd.DataFrame(lenses_dict)  # 生成pandas.DataFrame
    print(lenses_pd)  # 打印pandas.DataFrame
    le = LabelEncoder()  # 创建LabelEncoder()对象,用于序列化
    for col in lenses_pd.columns:  # 为每一列序列化
        lenses_pd[col] = le.fit_transform(lenses_pd[col])
    print(lenses_pd)

    featLabels = []
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']  # 特征标签

    myTree = createTree(lenses_pd.values.tolist(), lensesLabels, featLabels)

    print("树结构:",myTree)
    print("存储选择的最优特征标签:",featLabels)
    testVec = [1,1,1,0]  # 测试数据
    lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']  # 特征标签
    """
    这里我给的参数是lensesLabels
    所以测试数据他是按照你的特征标签给的标准来进行分类的
    
    如果参数给的是featLabels
    那么测试数据他是按照你的树结构来给值才会成功分类
    """
    result = classify(myTree, lensesLabels, testVec)
    if result == 0 :
        print("类型为:hard ")
    elif result == 1:
        print("类型为:no lenses ")
    elif result == 2:
        print("类型为:soft ")

    createPlot(myTree)

这就是全部的代码,中间有许多打印的东西还有许多注释我没有删,主要是懒,看结果就好了,可以通过修改测试数据来得到不同的分类结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值