机器人
执念 丶
路漫漫其修远兮,吾将上下而求索
展开
-
激光SLAM从理论到实践学习——第六节(基于图优化的激光SLAM方法)
基于图优化的激光SLAM方法(Grid-based栅格地图)之前说的都是基于滤波器的,典型的就是gmapping算法在估计的时候只是估计当前的位置xt,那么一旦x0:t-1中间出现错误的话,那么估计xt出错的可能性就会越来越大。基于滤波器的算法每次估计的是xt,当前时刻的位姿。而图优化估计的是x0:t,估计的是一个轨迹,轨迹上的每一个位姿都会进行估计,假设当你在某点出现一个很大的误差...原创 2019-11-26 19:55:05 · 5075 阅读 · 3 评论 -
激光SLAM从理论到实践学习——第五节(基于滤波的激光SLAM方法(Grid-based))
基于滤波的激光SLAM方法(Grid-based)前言:本章介绍第一个SLAM系统。基于滤波的激光SLAM方法相对落后了,滤波是只估计当前时刻的状态,如果前一时刻出现错误,就无法进行修正了。前言:Grid-based栅格地图,一般有两种地图,一个是栅格地图,还有一个是特征地图,视觉内用特征地图。贝叶斯滤波前言:状态估计大部分都是用贝叶斯的。数学概念(概率里面的东西)贝...原创 2019-11-24 21:16:09 · 3139 阅读 · 2 评论 -
激光SLAM从理论到实践学习——第四节(激光SLAM的前端配准方法)
激光的前端配准算法(帧间匹配算法)前端配准在视觉内叫做Tracking或者帧间匹配,对激光SLAM是有非常大的影响的帧间匹配不一定说的是前后两帧进行匹配,也可以是任意帧之间进匹配是一个Map—>Scan的过程,一个Scan和一个Map去匹配的过程常用的方法有下面四种ICP匹配方法(对上节ICP算法的证明)PL-ICP匹配方法(与ICP算法相似,只是说误差是之间的...原创 2019-11-20 21:51:09 · 3451 阅读 · 1 评论 -
激光SLAM从理论到实践学习——第三节(传感器数据处理2:激光雷达运动畸变的去除)
传感器数据处理2:激光雷达运动畸变的去除激光雷达运动畸变的去除比里程计标定更重要,但也取决于用的雷达型号。我用的思岚A2雷达频率小于10Hz,畸变也是比较明显的。概念介绍激光雷达传感器介绍(分类、原理)分类介绍三角测距(A2,EAI,一般10m左右的都是),双目摄像头也是用的三角测距法,左右各一个摄像头 优点:中近距离精度较高、价格便宜 缺点:远距离精度较差、易受干扰...原创 2019-11-19 18:59:06 · 2913 阅读 · 2 评论 -
激光SLAM从理论到实践学习——第二节(传感器数据处理1:里程计运动模型及标定)
传感器数据处理1:里程计运动模型及标定里程计模型一、两轮差分底盘的运动学模型差分模型与运动解算(线速度和角速度的计算过程分析)差分运动底盘它其实是一个欠驱动的模型,他的自由度是三个,x,y,角度C塔。但是他的驱动数和输入数是两个,一个是左轮的速度VL和右轮速度VR,它的运动是耦合的,它只能做圆弧运动。d为左轮或者右轮到车底盘中心的距离,假设左轮与右轮d相等,最左边的点为圆心,现在要让...原创 2019-11-18 22:03:34 · 2681 阅读 · 2 评论 -
激光SLAM从理论到实践学习——第一节(激光SLAM的发展与应用)
激光SLAM的发展和应用2D激光SLAMgmapping是一种尺度地图,hector也是静态地图还分混合地图和拓扑地图。一、尺度地图的实现方式主要分为两种有1.基于贝叶斯的,也就是基于滤波器的与图优化不同的是,基于滤波器的SLAM算法只估计机器人当前时刻的位置,所以他计算量小,但他的缺点也是这个,因为当前面上一时刻一旦产生了误差,这个误差就无法进行修复。Gmapping用的就是这...原创 2019-11-18 21:39:06 · 2680 阅读 · 13 评论 -
ROS中gmapping的原理(读后理解)
感谢博主,原创:https://blog.csdn.net/liuyanpeng12333/article/details/81946841这是我读完这篇博文的理解。首先明确三个概念: 1、Gmapping是基于滤波SLAM框架的常用开源SLAM算法。 2、Gmapping基于RBpf粒子滤波算法,即将定位和建图过程分离,先进行定位再进行建图。 3、Gmapping在RBp...原创 2019-09-10 21:50:04 · 6155 阅读 · 0 评论 -
ROS---进行建图或者move_base路径规划时出现打滑现象(雷达匹配不上地图)的解决方法 附gmapping建图配置参数
ROS—进行建图或者move_base路径规划时出现打滑现象(雷达匹配不上地图)的解决方法—本人多次实验的出的结论之前我的车会经常出现打滑现象,图也建不了,就算勉强建好了图,在进行路径规划的时候也是匹配不上,然后不停的进行行为恢复,很是苦恼。但后来我用我学长的车的时候发现他的匹配程度可以说是99%,基本不动,这就给建图和导航提供了很大的帮助,后来在抠他源码和不断实验之后发现他在运行算法之前通过调...原创 2019-09-06 21:50:01 · 9719 阅读 · 18 评论 -
(Ubuntu)Qt下的ROS图形化GUI编程---在模板上加功能+注释+源码
(Ubuntu)Qt下的ROS编程—在模板上加功能+注释+源码 在上篇介绍了如何创建Qt下ROS图形化GUI工程,创建好之后他会默认给我们一个模板,就在上篇博客中最后有截图到。 接下来就在工程模板的基础上添加一个订阅者Subscriber,并且画好Ui,实现图形化的Topic发布与订阅。工程目录如下,我会按照工程目录给出源码和注释。main_window.cpp:/**...原创 2019-08-05 12:09:50 · 1390 阅读 · 5 评论 -
(Ubuntu)Qt下的ROS图形化GUI编程---实现过程与步骤详解)
(Ubuntu)Qt下的ROS编程---实现过程与步骤详解Qt的下载安装功能包创建带有GUI的ROS工作空间Qt配置如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导...原创 2019-08-03 22:56:47 · 2400 阅读 · 2 评论 -
ROS原理学习第二天--ROS通信机制(Service)笔记---继第一天学习笔记
继续昨天内容:3.建立TCPROS/UDPROS连接底层实际还是通过基础的Socket流,在连接的过程中会创建三个层次的类对象,以建立和维护发布者与订阅者之间的连接,分别如下图所示:具体实现过程:分析源码可知,他实际上是发布者和订阅者之间通过互相发送header头,初始化Connection对象和TransportLink对象,从而建立Connection对象层和Tra...原创 2019-06-23 21:41:03 · 1182 阅读 · 0 评论