机器学习
执念 丶
路漫漫其修远兮,吾将上下而求索
展开
-
TensorFlow2笔记
第一部分神经网络设计过程与TensorFlow1差不多。只是函数不同。代码p13.张量(Tensor)讲解了创建Tensor的方法:tf.constan(张量内容,dtype=数据类型(可选))方法即可创建。将numpy数据类型转换为Tensor数据类型:tf.convenrt_to_tensor(数据名,dtype=数据类型(可选))生成正态分布的随机数:默认均值为0,标准差为1tf.random.normal(维度,mean=均值,stddev=标准差)生成截断式正态原创 2020-11-16 21:36:24 · 1813 阅读 · 0 评论 -
机器学习——回归实践(预测某一时间点在下一时刻的PM2.5)
前言在看完《机器学习实战》这本书的第八章之后,相对之前入门的时候,学习的李宏毅老师的机器学习的回归部分进行总结(那已经是去年的事了…)。当时作业一是预测某一时间点在下一时刻的PM2.5,我怎么着都对代码不熟悉,以至于我去学习了一遍Python基础,回过头还是挺懵,我估计是我不适合从李宏毅老师的视频入门,所以我推荐基础不大好的同类们从《机器学习实战》这本书入门机器学习,里面不会有太多数学推导过程,非常实用,我认为学习机器学习得先理解其运行流程与使用,至于数学推导等细节方面,还是等做项目需要的时候再回头学习原创 2020-07-30 23:25:42 · 1622 阅读 · 6 评论 -
机器学习实战——第八章(回归):回归——预测数值型数据
前言接着上一篇继续学习。首先感谢博主:Jack-Cui主页:http://blog.csdn.net/c406495762回归博文地址:https://blog.csdn.net/c406495762/article/details/78760239https://blog.csdn.net/c406495762/article/details/82967529这篇博文对书上的内容很形象的进行了表达,通俗易懂,用自己的实例来进行讲解,比书上讲的清楚太多,于是我才开始了学习,感激不尽,真心推荐。原创 2020-07-30 22:17:26 · 6594 阅读 · 1 评论 -
机器学习——决策树实践(预测隐形眼镜类型)
前言之前把《机器学习实战》这本书的分类部分学完了,想自己动手实践一下,所以从前面的章节开始,慢慢熟悉代码。今天在学习决策树的时候,发现书中并没有直接给出预测隐形眼镜类型的代码,于是想借着这个机会自己实践一下。在这过程中我使用原来的一些函数,比如创建决策树的函数,用来对官方给的文件进行分类,会出现bestFeatLabel = labels[bestFeat]IndexError: list index out of range等错误,于是我就开始从头熟悉代码,print单步调试代码,最终得出了结原创 2020-07-25 20:50:02 · 1420 阅读 · 0 评论 -
机器学习实战——第七章(分类):利用AdaBoost元算法提升分类器性能
前言接着上一篇继续学习。首先感谢博主:Jack-Cui主页:http://blog.csdn.net/c406495762AdaBoost博文地址:https://blog.csdn.net/c406495762/article/details/78212124这篇博文对书上的内容很形象的进行了表达,通俗易懂,用自己的实例来进行讲解,比书上讲的清楚太多,于是我才开始了学习,感激不尽,真心推荐。我这篇博文大多从它的博文中摘抄,但也是我一个字一个敲出来的,算法我也是自己算过的,算是学完它的博文的一个原创 2020-07-19 17:26:42 · 2381 阅读 · 0 评论 -
机器学习实战——第六章(分类):支持向量机SVM
前言首先感谢博主:Jack-Cui主页:http://blog.csdn.net/c406495762支持向量机博文地址:https://blog.csdn.net/c406495762/article/details/78072313https://blog.csdn.net/c406495762/article/details/78158354这一章在我看来可以说很难了,数学方面的东西还是有点难理解,代码方面也是,硬着头皮看完了。公式没进行推导了,直接对照着书的结论。具体推导可以参考上面博主原创 2020-07-18 17:32:56 · 1305 阅读 · 0 评论 -
机器学习实战——第五章(分类):Logistic回归
前言首先感谢博主:Jack-Cui主页:http://blog.csdn.net/c406495762Logistic回归博文地址:https://blog.csdn.net/c406495762/article/details/77723333https://blog.csdn.net/c406495762/article/details/77851973#%E4%B8%80-%E5%89%8D%E8%A8%80这篇博文对书上的内容很形象的进行了表达,通俗易懂,用自己的实例来进行讲解,比书上讲原创 2020-07-15 15:35:15 · 2057 阅读 · 0 评论 -
机器学习实战——第四章(分类):朴素贝叶斯
前言首先感谢博主:Jack-Cui主页:http://blog.csdn.net/c406495762朴素贝叶斯博文地址:https://blog.csdn.net/c406495762/article/details/77341116https://blog.csdn.net/c406495762/article/details/77500679这篇博文对书上的内容很形象的进行了表达,通俗易懂,用自己的实例来进行讲解,比书上讲的清楚太多,于是我才开始了学习,感激不尽,真心推荐。我这篇博文大多原创 2020-07-13 20:25:24 · 1154 阅读 · 0 评论 -
机器学习实战——第三章(分类):决策树算法与实例(二)
前言接着上一篇继续学习。首先感谢博主:Jack-Cui主页:http://blog.csdn.net/c406495762决策树博文地址:https://blog.csdn.net/c406495762/article/details/76262487这篇博文对书上的内容很形象的进行了表达,通俗易懂,用自己的实例来进行讲解,比书上讲的清楚太多,于是我才开始了学习,感激不尽,真心推荐。我这篇博文大多从它的博文中摘抄,但也是我一个字一个敲出来的,算法我也是自己算过的,算是学完它的博文的一个总结吧,如原创 2020-07-10 11:44:25 · 895 阅读 · 0 评论 -
机器学习实战——第三章(分类):决策树算法与实例(一)
前言今天看了会《机器学习实战》第三章:决策树,很迷,似懂非懂,专业术语太多了,而且有点混乱,对于一个大一概率论没学好的学渣来说,如今大三的我看到那些概率公式和一些概率论专业术语就头疼,马上就打了退堂鼓,早起看了半个小时没看明白果断又躺回了床上。直到我看到了这篇博文。首先感谢博主:Jack-Cui主页:http://blog.csdn.net/c406495762决策树博文地址:https://blog.csdn.net/c406495762/article/details/75663451这篇博文原创 2020-07-08 21:28:14 · 1454 阅读 · 0 评论 -
机器学习实战——第二章(分类):k-近邻算法与实例
前言学了好几节李宏毅老师的机器学习视频,感觉脑袋瓜嗡嗡的,似懂非懂,没有代码实现过,而且听的时候我老被它的英文带跑了,英语确实不大好。。。。。李宏毅老师是把理论通过一些例子例举出来,我能听明白,但不知道干嘛用的,怎么去使用,而且一个这么长的假期搞得我基本忘得差不多了,想去补,但是又有心无力,害,没办法只能找点新的知识让自己先把学习兴趣提上来。《机器学习实战》我觉得讲的非常棒,会给出具体的实例与代码让大家一同实现,建议初学者先看书入门吧,比如像我这样的英语差的孩儿。。。。进入正题吧。。k-近邻算法概念原创 2020-07-07 16:04:46 · 559 阅读 · 1 评论 -
(P4笔记)Classification分类问题——机器学习:李宏毅
Classification(分类)分类也是找一个function,只不过他的输入输出不同,它输出的是用来表明输入是属于那一个类别。应用:银行根据用户信息确定是否贷款、医疗、文字辨识、人脸识别。引例还是以宝可梦为例,需要找到一个function,输入是一个宝可梦的某种数值,输出则是宝可梦属于十八种属性的哪一种。用宝可梦的一些自身属性(数值化)来当做function的输入,如何做?理想做法找一个function,输出为一个类别。在我们找的这个function里,内建一个func原创 2020-07-04 10:55:59 · 677 阅读 · 4 评论 -
(P3-1笔记)Gradien Descent梯度下降——机器学习:李宏毅
Gradien Descent回顾Loss function是一个function的function,他的input来自一个function,但我们也可以写成关于这个function的参数形式作为Loss function的input。我们要找一组参数θ,让Loss function越小越好。这件事就可以用Gradien Descent来做。假设有两个参数{θ1,θ2}随机取一个起始点θ0...原创 2019-12-05 22:36:21 · 280 阅读 · 0 评论 -
(P2笔记)Where does the error come from?(误差从而来?)——机器学习:李宏毅
where does the error come from?(误差从何而来?)回顾:上节课说选择不同的Model,在Training Data和Testing Data中有不同的error,而且越复杂的Model不一定会有越小的error我们本节课要做的就是知道这个error来自什么地方。其实这个来自两个,一是来自bias偏差,其二是来自variance方差**。Estimat...原创 2019-12-04 21:26:14 · 305 阅读 · 0 评论 -
(P1笔记)Regression回归——机器学习:李宏毅
Regression回归对照学习框架来看他是上一节中的scenario场景中的一个 task任务:Regression回归Regression:output a scalar 回归:输出是一个数值量上节课说机器学习就是为了找到一个function,那回归要做的事情就是我们要找的那个function的output是一个数值,也就是说我们要找的function的output是...原创 2019-12-03 15:30:53 · 548 阅读 · 0 评论 -
(P0-1笔记)机器学习简介——机器学习:李宏毅
什么是机器学习?写程序让Machine(机器)有学习的能力给一段声音告诉他意思,下次再给他就能识别实际机器学习就是在寻找一个Function函数就是根据我们提供的资料去寻找我们想要的Function比如语音识别输入函数Function是一段声音,输出就是这段语音说的意思比如图像识别输入一张图片。识别图片的东西等等Framewo...原创 2019-12-03 15:10:13 · 282 阅读 · 0 评论