R包安装又报错?别慌!这份生信人专属避坑指南请收好 (oligo, DMwR, catboost, extraTrees...)

继上一期分享R包安装策略后【R包安装总是出错?这份汇总帮你一键解决!】,我们注意到特定包的安装细节仍是许多研究者面临的挑战。基于近期收到的用户咨询反馈,本篇我们针对几个高频问题R包,提供了详细解答:oligo 包怎么装才能顺利读取芯片数据?DMwR 包用哪种方法(CRAN归档、Conda或GitHub)安装最稳妥?如何直接从指定URL安装 catboost?以及,安装 extraTrees 时,如何从根源上解决因 rJava 依赖(特别是 libjvm.so 缺失)导致的失败?此外,如果你需要安装特定版本的 Matrix 包或其他包,本篇也提供了清晰的指引。

安装oligo包

图片

oligo包可以读取芯片数据到表达矩阵。

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("oligo")

安装DMwR包

图片

DMwR 是一个用于数据挖掘和机器学习的 R 语言包,从数据预处理到模型评估,都有相应工具。

方法1:经典CRAN安装 (曾适用,但目前可能已从CRAN归档)

install.packages("DMwR")

方法2:conda安装

conda install conda-forge::r-dmwr

方法3:对于已从CRAN归档的包,可以从GitHub上的CRAN存档镜像安装

remotes::install_github("cran/DMwR")
#加载 
library(DMwR)

安装catboost包

catboost包含强大的梯度提升算法,以其出色的性能和对类别特征的友好处理受到青睐。

官方提供了预编译好的二进制包,可以直接通过URL安装(请注意版本号和系统架构可能需要更新):

# 需要先安装remotes包
# install.packages("remotes")

remotes::install_url(
  "https://github.com/catboost/catboost/releases/download/v1.2.8/catboost-R-linux-x86_64-1.2.8.tgz" 
)
# 注意:请检查官方releases页面获取最新或适合你系统的版本URL
library(catboost)

安装extraTrees包

extraTrees提供了极端随机森林算法的实现,但在安装时,它与rJava的依赖关系常常让新手“栽跟头”。遇到报错不要怕,我们带你一步步解决!

方法1:conda安装

conda install r::r-extratrees

方法2:手动安装

首先需要下载安装包,可以下载到家目录,也可以自定义路径

wget https://mirrors.aliyun.com/CRAN/src/contrib/Archive/extraTrees/extraTrees_1.0.5.tar.gz

在R环境安装,确定安装包的位置:

install.packages("/mnt/data/home/user/extraTrees_1.0.5.tar.gz", repos = NULL, type = "source")

安装过程报错:

Error: package or namespace load failed for ‘rJava’:
 .onLoad failed in loadNamespace() for 'rJava', details:
  call: dyn.load(file, DLLpath = DLLpath, ...)
  error: unable to load shared object '/usr/local/lib/R/site-library/rJava/libs/rJava.so':
  libjvm.so: cannot open shared object file: No such file or directory
Execution halted
ERROR: lazy loading failed for package ‘extraTrees’

安装失败的根本原因是 extraTrees 包依赖于 rJava 包,而 rJava 无法加载。rJava无法加载的原因是libjvm.so这个文件找不到

解决方法:

1、回到终端确认是否已安装Java

java -version

sudo apt update
sudo apt install openjdk-11-jdk

#确认
java -version 

2、配置R和Java的连接

sudo R CMD javareconf

然后在R环境中运行:

system("java -version")
#如果返回 Java 版本信息,说明配置成功

3、安装rJava,可以显式指定安装路径。

install.packages("rJava", lib = "/usr/local/lib/R/site-library")
#加载
library(rJava)

4、重新尝试安装

install.packages("/mnt/data/home/wpw1/extraTrees_1.0.5.tar.gz", repos = NULL, type = "source", lib = "/usr/local/lib/R/site-library")
#加载
library(extraTrees)

安装特定版本的Matrix

有时,为了保证代码的可复现性或兼容性,希望能够安装特定版本的R包,可以使用conda安装指定版本,也可以把安装包上传到服务器手动安装。

图片

install.packages("~/Matrix_1.6-1.tar.gz", repos = NULL, type = "source")

除了帮助用户解决安装包的问题,我们还提供代码纠错,程序优化,科研问题咨询等服务!

 

一路走来,天意云团队的努力得到了许多小伙伴的信任和支持,我们团队备受鼓舞,也充满了感激!大家的肯定是鼓励我们继续前进的最大动力。接下来,我们会继续用心打磨技术、做好服务,希望能更好地陪伴和支持每一位选择我们的探索者,和大家一起走得更远!

图片

无损主机切换(遥遥领先,所有Rstudio&Jupyter和共享服务器均支持此功能,让你用共享的价格享受近乎于独享的体验)

保持当前服务器所有配置和数据的前提下,可自由选择空闲的计算节点,彻底解决共享服务器使用人数多而需要排队或无法使用的问题。(最先进的调度系统,无需重装环境以及上传数据)

图片

图片

要使用R进行热图分析,需要先安装一些必要的R和软件依赖项,括`pheatmap`、`RColorBrewer`和`gplots`等。你可以在R中使用以下命令安装这些必备的R: ```r install.packages("pheatmap") install.packages("RColorBrewer") install.packages("gplots") ``` 安装完毕后,你可以使用以下步骤在微平台上进行热图分析: 1. 登录微平台,选择"数据分析"->"单样本分析"->"差异分析",上传你的表达矩阵和样本息。 2. 在"差异分析"页面中,选择适当的差异分析方法,进行差异基因筛选。 3. 进入"富集分析"页面,进行富集分析。在"结果展示"中,你可以下载到差异基因的富集分析结果。 4. 找到你感兴趣的富集通路,下载其差异基因列表。 5. 在R中读取差异基因列表,绘制热图。 下面是一个示例代码,可以根据你的实际情况进行修改: ```r # 加载必要的R library(pheatmap) library(RColorBrewer) library(gplots) # 读取差异基因列表 diff_genes <- read.table("diff_genes.txt", header = TRUE) # 读取表达矩阵 expr_matrix <- read.table("expr_matrix.txt", header = TRUE, row.names = 1) # 根据差异基因列表筛选表达矩阵 expr_matrix <- expr_matrix[rownames(expr_matrix) %in% diff_genes$GeneID,] # 绘制热图 pheatmap(expr_matrix, cluster_rows = TRUE, cluster_cols = TRUE, scale = "row", show_rownames = FALSE, show_colnames = FALSE, annotation_col = sample_info$group, annotation_colors = brewer.pal(9, "Set1"), color = colorRampPalette(brewer.pal(9, "YlOrRd"))(100)) ``` 这个示例代码使用筛选出来的差异基因列表来选择表达矩阵的子集,并使用`pheatmap`函数绘制热图。你需要将`diff_genes.txt`和`expr_matrix.txt`替换为你的实际文件名,并根据需要调整其他参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值