生信技能28-Linux服务器安装R包方式汇总

本文总结了在Linux服务器上安装R包的四种方法:1) 通过conda安装,推荐使用Anaconda官网搜索并安装;2) 在线安装源文件,如LDlinkR包,从CRAN获取tar.gz文件并在R环境中安装;3) 本地安装源文件,下载后在R环境中进行安装;4) 使用命令行安装,如在Linux环境下,通过shell终端直接下载并安装shiny包。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统安装方式

对于部分R包容易安装失败, 在此不一一列举

install.packages("BiocManager")
BiocManager::install("LDlinkR",ask=F,update=F)

1. conda安装(推荐)

进入https://anaconda.org/网址,搜索R包。例如repitools LDlinkR等

conda install -c bioconda bioconductor-repitools
conda install -c conda-forge r-ldlinkr

在这里插入图片描述

在这里插入图片描述

2. 在线安装源文件包(推荐)

以安装LDlinkR包为例,在https://cran.r-project.org/web/packages/LDlinkR/index.html 网址获取软件包LDlinkR_1.3.0.tar.gz链接, 进入R中,通过以下命令安装

#进入R
R

# 安装命令
install.packages("https://cran.r-project.org/src/contrib/LDlinkR_1.3.0.tar.gz", repos=NULL, type="source")

在这里插入图片描述

3. 本地安装源文件包

以安装LDlinkR包为例,通过将软件包自动下载至本地安装, 进入R中,通过以下命令安装

# 下载至本地并安装
download.file("https://cran.r-project.org/src/contrib/LDlinkR_1.3.0.tar.gz", "LDlinkR_1.3.0.tar.gz")

如果下载至本地安装

# 下载安装包
wget https://cran.r-project.org/src/contrib/LDlinkR_1.3.0.tar.gz
# 安装命令
sudo R CMD INSTALL package.tar.gz

4. 命令行安装

以安装shiny包为例,如果是linux版本,命令行从网上自动下载包如下:

sudo su - -c R -e "install.packages('shiny', repos='https://cran.rstudio.com/')"

如果是linux,命令行安装本地包,在shell的终端

<think>好的,我现在需要帮用户处理转录组数据的分析流程。用户提供了数据存放的目录,里面有CleanData下的HA1样本,含两个fq.gz文件。用户需要详细的Linux代码来进行数据处理和下游分析。 首先,我需要确认转录组分析的标准流程。通常括质控、比对、定量、差异表达分析等步骤。用户的数据已经是CleanData,可能已经经过初步处理,但为了保险起见,还是需要先做质控,比如用FastQC和MultiQC。不过用户提到是原始数据,可能需要先做质量控制,但根据目录名CleanData,可能已经质控过了,但需要确认。可能需要询问用户是否已经做过质控,但用户现在直接要求继续处理,所以可能需要括这一步,或者跳过。假设用户的数据已经是clean的,可能不需要再trim,但最好还是检查一下。 接下来是比对,比如使用HISAT2,将clean data比对到参考基因组。然后转为BAM文件,排序,标记重复等。之后用StringTie进行转录本组装和定量,得到表达矩阵。然后可能需要合并所有样本的结果,使用prepDE.py成计数矩阵。下游分析可能括DESeq2或edgeR进行差异表达分析,功能富集分析如GO、KEGG等。 需要注意样本可能有多个,比如HA1、HA2等,所以代码需要考虑循环处理多个样本。用户目前只有HA1,但可能需要扩展性,所以用变量处理样本名。 然后,编写代码步骤:质控、比对、定量、合并表达矩阵、差异分析、富集分析。每个步骤需要相应的工具和命令。比如FastQC、HISAT2、samtools、StringTie、prepDE.py,以及R脚本进行差异分析。 另外,需要确保参考基因组和注释文件的路径正确,用户可能需要自己下载,比如从Ensembl或GENCODE获取。代码中需要替换相应的路径。 还要考虑计算资源,比如线程数,内存限制,可能需要根据用户的实际环境调整参数,比如使用4个线程。 最后,成报告,比如MultiQC汇总质控结果,DESeq2的结果可视化等。可能还需要注释差异基因,使用clusterProfiler等工具。 需要检查每个步骤的命令是否正确,比如HISAT2的索引是否存在,文件路径是否正确,输出目录是否需要创建。比如在每个步骤前使用mkdir -p创建目录。 可能用户对Linux流程有一定了解,但需要详细的代码示例,所以注释每个步骤的作用,并提示需要安装的软件和准备工作。 可能需要提醒用户安装必要的软件,比如conda安装hisat2, stringtie, samtools, fastqc等。或者提供conda安装命令。 最后,确保代码的可复制性,使用变量代替硬编码路径,方便用户修改。比如设置ref_genome和annotation的路径变量。 总结:流程括质控、比对、定量、差异分析、富集分析,每个步骤的代码示例,注意事项和软件安装提示。</think>以下是一个基于Linux系统的转录组分析流程示例代码,含数据处理和下游分析的关键步骤。请根据实际情况调整参数和路径: ```bash #!/bin/bash # 设置路径变量(按需修改) clean_data_dir="/home/yangjiayi/数据/转录组/原始数据/Data/CleanData" output_dir="/home/yangjiayi/数据/转录组/分析结果" ref_genome="/path/to/reference_genome/hg38_index" # HISAT2索引路径 annotation="/path/to/annotation/gencode.v40.annotation.gtf" # 注释文件路径 # 创建输出目录结构 mkdir -p ${output_dir}/{fastqc,hisat2,stringtie,deseq2} ########################## # 1. 原始数据质量评估 ########################## for sample in HA1; do fastqc -t 4 \ ${clean_data_dir}/${sample}/${sample}_Clean_Data1.fq.gz \ ${clean_data_dir}/${sample}/${sample}_Clean_Data2.fq.gz \ -o ${output_dir}/fastqc/ done # 汇总报告 multiqc ${output_dir}/fastqc/ -o ${output_dir}/fastqc/ ########################## # 2. 序列比对 ########################## for sample in HA1; do hisat2 -p 4 \ -x ${ref_genome} \ -1 ${clean_data_dir}/${sample}/${sample}_Clean_Data1.fq.gz \ -2 ${clean_data_dir}/${sample}/${sample}_Clean_Data2.fq.gz \ -S ${output_dir}/hisat2/${sample}.sam # 格式转换 samtools view -@ 4 -Sb ${output_dir}/hisat2/${sample}.sam > ${output_dir}/hisat2/${sample}.bam samtools sort -@ 4 -o ${output_dir}/hisat2/${sample}_sorted.bam ${output_dir}/hisat2/${sample}.bam samtools index ${output_dir}/hisat2/${sample}_sorted.bam done ########################## # 3. 转录本定量 ########################## for sample in HA1; do stringtie ${output_dir}/hisat2/${sample}_sorted.bam \ -p 4 \ -G ${annotation} \ -o ${output_dir}/stringtie/${sample}_expression.gtf \ -A ${output_dir}/stringtie/${sample}_gene_abundance.tsv done # 合并所有样本表达矩阵 find ${output_dir}/stringtie/ -name "*_expression.gtf" > ${output_dir}/stringtie/gtf_list.txt stringtie --merge -p 4 -G ${annotation} \ -o ${output_dir}/stringtie/merged_assembly.gtf \ ${output_dir}/stringtie/gtf_list.txt ########################## # 4. 成计数矩阵 ########################## # 需要准备样本列表文件 echo "HA1 ${output_dir}/stringtie/HA1_expression.gtf" > ${output_dir}/stringtie/sample_list.txt # 使用prepDE.py成计数矩阵(需从StringTie官网下载该脚本) python prepDE.py \ -i ${output_dir}/stringtie/sample_list.txt \ -g ${output_dir}/deseq2/gene_count_matrix.csv \ -t ${output_dir}/deseq2/transcript_count_matrix.csv ########################## # 5. 下游分析(R脚本示例) ########################## cat > ${output_dir}/deseq2/differential_expression.R <<EOF # 差异表达分析 library(DESeq2) countData <- read.csv("${output_dir}/deseq2/gene_count_matrix.csv", row.names=1) dds <- DESeqDataSetFromMatrix(countData, colData=data.frame(condition=rep("HA1",1)), design=~1) dds <- DESeq(dds) res <- results(dds) write.csv(res, "${output_dir}/deseq2/DE_results.csv") # 可视化(示例) pdf("${output_dir}/deseq2/MA_plot.pdf") plotMA(res, main="DESeq2 MA Plot") dev.off() EOF # 运行R脚本 Rscript ${output_dir}/deseq2/differential_expression.R ``` 使用说明: 1. 环境要求: - 安装必要软件:`sudo apt-get install hisat2 samtools stringtie fastqc multiqc r-base` - 需提前准备参考基因组和注释文件(推荐使用GENCODE或Ensembl数据库) 2. 关键步骤说明: - 质量评估:使用FastQC和MultiQC成质量报告 - 序列比对:使用HISAT2将reads比对到参考基因组 - 转录本组装:使用StringTie进行转录本定量 - 差异分析:使用DESeq2进行差异表达基因分析 3. 扩展建议: - 添加更多样本时,修改`for sample in HA1`部分为样本列表 - 差异分析需要至少两个实验条件,当前示例为单样本演示 - 建议使用conda管理息软件环境 4. 下游分析扩展: - 基因功能注释(GO/KEGG分析) - 蛋白互作网络分析 - 可视化(热图、火山图等) 注意:实际使用时需要根据实验设计和计算资源调整线程数(-p参数)和内存参数。建议在计算集群或高性能服务器上运行大数据量分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信与基因组学

每一份鼓励是我坚持下去动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值