单目标追踪——【手工特征和深度特征】

写在前面

最近看了几篇单目标追踪领域的综述论文,想着对单目标追踪领域的经典论文按照时间线进行梳理一下,以便能快快找到现在单目标追踪的研究热点,未来方向。总的是从【相关滤波】和【孪生网络】两个框架为中心进行梳理。此篇先梳理一下目标追踪领域的一些常用特征。

在梳理框架前,首先关注一下在单目标领域中常用的特征。有时,虽然CNN特征应用广泛,但是CNN特征也花费了较大的时间成本,所以在实际的算法落地时,CNN中看不中用。反而应用HOG特征、CN特征的追踪器也能在保证追踪效果不下降太多而达到高fps。

手工特征

HOG(梯度特征)——基于形状边缘特征的描述算子

论文来源:Histograms of Oriented Gradients for Human Detection
参考博客:行人检测之HOG
80行Python实现-HOG梯度特征提取

HOG算法思想
在计算机视觉以及数字图像处理中梯度方向直方图(HOG)是一种能对物体进行检测的基于形状边缘特征的描述算子,它的原理是在HOG特征描述符中,梯度方向的分布,也就是梯度方向的直方图被视作特征。图像的梯度(x和y导数)非常有用,因为边缘和拐角(强度突变的区域)周围的梯度幅度很大,并且边缘和拐角比平坦区域包含更

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值