写在前面
最近看了几篇单目标追踪领域的综述论文,想着对单目标追踪领域的经典论文按照时间线进行梳理一下,以便能快快找到现在单目标追踪的研究热点,未来方向。总的是从【相关滤波】和【孪生网络】两个框架为中心进行梳理。此篇先梳理一下目标追踪领域的一些常用特征。
在梳理框架前,首先关注一下在单目标领域中常用的特征。有时,虽然CNN特征应用广泛,但是CNN特征也花费了较大的时间成本,所以在实际的算法落地时,CNN中看不中用。反而应用HOG特征、CN特征的追踪器也能在保证追踪效果不下降太多而达到高fps。
手工特征
HOG(梯度特征)——基于形状边缘特征的描述算子
论文来源:Histograms of Oriented Gradients for Human Detection
参考博客:行人检测之HOG
80行Python实现-HOG梯度特征提取
HOG算法思想:
 在计算机视觉以及数字图像处理中梯度方向直方图(HOG)是一种能对物体进行检测的基于形状边缘特征的描述算子,它的原理是在HOG特征描述符中,梯度方向的分布,也就是梯度方向的直方图被视作特征。图像的梯度(x和y导数)非常有用,因为边缘和拐角(强度突变的区域)周围的梯度幅度很大,并且边缘和拐角比平坦区域包含更

 
                   
                   
                   
                   最低0.47元/天 解锁文章
最低0.47元/天 解锁文章
                           
                       
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   2806
					2806
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            