C++/Python PAT乙级1073 多选题常见计分法 (20分)

批改多选题是比较麻烦的事情,有很多不同的计分方法。有一种最常见的计分方法是:如果考生选择了部分正确选项,并且没有
选择任何错误选项,则得到 50% 分数;如果考生选择了任何一个错误的选项,则不能得分。本题就请你写个程序帮助老师批改
多选题,并且指出哪道题的哪个选项错的人最多。

输入格式:
输入在第一行给出两个正整数 N(≤1000)和 M(≤100),分别是学生人数和多选题的个数。随后 M 行,每行顺次给出一道题
的满分值(不超过 5 的正整数)、选项个数(不少于 2 且不超过 5 的正整数)、正确选项个数(不超过选项个数的正整数)、
所有正确选项。注意每题的选项从小写英文字母 a 开始顺次排列。各项间以 1 个空格分隔。最后 N 行,每行给出一个学生的答
题情况,其每题答案格式为 (选中的选项个数 选项1 ……),按题目顺序给出。注意:题目保证学生的答题情况是合法的,即不存
在选中的选项数超过实际选项数的情况。

输出格式:
按照输入的顺序给出每个学生的得分,每个分数占一行,输出小数点后 1 位。最后输出错得最多的题目选项的信息,格式为:
错误次数 题目编号(题目按照输入的顺序从1开始编号)-选项号。如果有并列,则每行一个选项,按题目编号递增顺序输出;
再并列则按选项号递增顺序输出。行首尾不得有多余空格。如果所有题目都没有人错,则在最后一行输出 Too simple。

输入样例 13 4 
3 4 2 a c
2 5 1 b
5 3 2 b c
1 5 4 a b d e
(2 a c) (3 b d e) (2 a c) (3 a b e)
(2 a c) (1 b) (2 a b) (4 a b d e)
(2 b d) (1 e) (1 c) (4 a b c d)

      
    
输出样例 13.5
6.0
2.5
2 2-e
2 3-a
2 3-b

输入样例 22 2 
3 4 2 a c
2 5 1 b
(2 a c) (1 b)
(2 a c) (1 b)

输出样例 25.0
5.0
Too simple

1.把选项转换成0,1的形式(是s[5]),选中为1.
2.错得最多的题目选项:一开始只把错选的题目算进去了,发现错误。漏选的选项也算。
C++ 全通过

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <stdlib.h>
#include <iomanip>
using namespace std;
struct problem
{
    int a,b,c;//满分值,选项个数,正确选项个数
    int s[5]={0};//所有正确选xiang
};
struct wrong
{
    int num=0;//错误次数
    int a;
    int s[5]={0};//错误选项
    int r[5]={0};
};
int main()
{
    int n,m;//学生人数和多选题的个数
    cin >> n >> m;
    problem p[m];
    for(int i=0;i<m;i++)
    {
        cin >> p[i].a >> p[i].b >> p[i].c;
        for(int j=0;j<p[i].c;j++)
        {
            char ans;
            cin >> ans;
            p[i].s[ans-'a']=1;
        }
    }
    double score[n]={0};
    wrong w[m];
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<m;j++)
        {
            int x=0;
            char y;
            int xuanze[5]={0};
            getchar();//不加就错误()()之间有空格
            scanf("(%d",&x);
            for(int t=0;t<x;t++)
            {
                cin >> y;
                int choice=y-'a';
                xuanze[choice]=1;
            }
            scanf(")");
            int flag=0;
            for(int t=0;t<5;t++)
            {
                if(p[j].s[t]!=xuanze[t]) {w[j].s[t]++;}//错的题目选项次数加1(错选和漏选)
                if(p[j].s[t]==0 && xuanze[t]==1) {flag=1;}//错选
            }
            if(flag==0 && x==p[j].c) score[i]+=p[j].a;//完全正确
            if(flag==0 && x<p[j].c) score[i]+=1.0*p[j].a/2;//部分正确,漏选
        }
    }
    for(int i=0;i<n;i++)
    {
        double t=score[i];
        cout << setiosflags(ios::fixed) << setprecision(1) << t << endl;
    }
    int max_wrong=0;
    for(int i=0;i<m;i++)
    {
        for(int j=0;j<5;j++)
        {
            if(w[i].s[j]>max_wrong) max_wrong=w[i].s[j];
        }
    }
    if(max_wrong==0) cout <<"Too simple";
    else
    {
        int num1=0;
        for(int i=0;i<m;i++)
        {
            for(int j=0;j<5;j++)
            {
                if(w[i].s[j]==max_wrong)
                {
                    num1++;
                    if(num1>=2) cout << endl;
                    cout << max_wrong <<" "<< i+1 <<"-"<<(char)(j+'a');
                }
            }
        }
    }
    return 0;
}


Python
测试点4错误。找了好久没发现错误在哪儿…

n,m=map(int,input().split())
answer,wrong=[],[]

for i in range(m):
    l=list(input().split())
    answer.append(l)#存储正确选项答案
    wrong.append([0 for j in range(int(l[1]))])#存储每道题每个选项的错误次数,从a开始

for i in range(n):
    l=list(input())
    j=1
    lst=[]
    while j<len(l):
        lst.append(l[j:j+int(l[j])*2+1:2])
        j+=int(l[j])*2+4
    """判断选项"""
    score=0#每个同学的分数
    for j in range(m):
        sep1,sep2=set(lst[j][1:]),set(answer[j][3:])#作答选项和正确选项
        if sep1==sep2:#全部正确
            score+=float(answer[j][0])
        elif sep1<sep2:#部分正确
            score+=float(answer[j][0])*0.5
        for t in sep1^sep2:#用异或得到包括错选和漏选的选项
            wrong[j][ord(t)-97]+=1
    print("%.1f"%score)
wrong_Max=max(max(wrong))#选项的最大错误次数
if wrong_Max==0:
    print("Too simple")
else:
    for i in range(m):
        for j in range(len(wrong[i])):
            if wrong[i][j]==wrong_Max:
                print("{} {}-{}".format(wrong_Max,i+1,chr(j+97)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值