Transformers预训练模型使用:序列分类 Sequence Classification

序列分类任务的工作是将文本序列归类到预设类型中,如新闻分类、情感分类等,就属于这类任务。

情感分类

以下是使用pipelines来进行情感分类的例子,具体任务是判断输入文本是消极的还是积极的。

示例:

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

result = classifier("I hate you")[0]
print(f"label: {result['label']}, with score: {round(result['score'], 4)}")

result = classifier("I love you")[0]
print(f"label: {result['label']}, with score: {round(result['score'], 4)}")

输出结果:

label: NEGATIVE, with score: 0.9991
label: POSITIVE, with score: 0.9999
  • 该模型会返回文本的标签,即NEGATIVEPOSITIVE,和它在这个标签上的评价分数score

语句释义

以下是语句释义的例子,主要任务是使用一个模型来判断两个序列是否可以相互解释。过程如下:

  1. 实例化一个文本标记器(tokenizer)和一个BERT模型(model),并将加载预训练的权重。
  2. 用两个句子建立一个序列,其中包含特定模型的分隔符、标记类型ID和注意力掩码。这一步可以使用文本标记器自动生成。
  3. 将创建好的序列送入模型,并获得分类结果。结果由两个类组成:0(表示不能释义)和1(表示可以释义)。
  4. 使用softmax将其转化为分类的概率。
  5. 打印结果。

示例:

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased-finetuned-mrpc")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased-finetuned-mrpc")

classes = ["不能释义", "可以释义"]

sentence_0 = "I am a student coming from China."
sentence_1 = "I am a big pig."
sentence_2 = "I am a person who studies in the school"

paraphrase = tokenizer(sentence_0, sentence_2, return_tensors="pt")
not_paraphrase = tokenizer(sentence_0, sentence_1, return_tensors="pt")

paraphrase_classification = model(**paraphrase)
not_paraphrase_classification = model(**not_paraphrase)

p_result = torch.softmax(paraphrase_classification[0], dim=1)[0]
np_result = torch.softmax(not_paraphrase_classification[0], dim=1)[0]

print(sentence_0, "\n", sentence_2)
for i in range(len(classes)):
    print("{}:{:.2f}%".format(classes[i], p_result[i].item() * 100))

print(sentence_0, "\n", sentence_1)
for i in range(len(classes)):
    print("{}:{:.2f}%".format(classes[i], np_result[i].item() * 100))

输出结果:

I am a student coming from China. 
 I am a person who studies in the school
不能释义:23.34%
可以释义:76.66%
I am a student coming from China. 
 I am a big pig.
不能释义:92.51%
可以释义:7.49%
### 使用 BERT 预训练模型进行文本分类的实际操作 在实际应用中,使用 BERT 进行文本分类涉及几个重要步骤。首先,加载预训练的 BERT 模型并对其进行微调以适应特定的任务需求。这通常通过添加一个额外的分类层来实现。 对于文本分类任务,BERT 的输入由三部分组成:特殊标记 `[CLS]` 和 `[SEP]` 以及分词后的文本序列。其中 `[CLS]` 是用于分类的关键标记,其对应的隐藏状态会被用作整个句子的表示[^1]。 下面是一个简单的 Python 实现例子,展示如何基于 Hugging Face 库中的 `transformers` 来构建和训练一个二元情感分析器: ```python from transformers import BertTokenizer, BertForSequenceClassification import torch from datasets import load_dataset # 加载预处理好的数据集 (这里以IMDB为例) dataset = load_dataset('imdb') # 初始化 BERT tokenizer 和 pre-trained model with a sequence classification head on top. tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) def encode(examples): return tokenizer(examples['text'], padding='max_length', truncation=True) encoded_dataset = dataset.map(encode, batched=True) small_train_dataset = encoded_dataset['train'].shuffle(seed=42).select([i for i in list(range(100))]) small_test_dataset = encoded_dataset['test'].shuffle(seed=42).select([i for i in list(range(25))]) from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir='./results', learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_test_dataset, ) trainer.train() ``` 上述代码片段展示了如何准备数据、定义模型架构、设置超参数,并最终启动训练过程。值得注意的是,在这个过程中,已经预先训练过的 BERT 能够很好地捕捉到自然语言中的复杂模式,从而使得仅需少量的数据即可达到较好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值