序列分类器

什么是序列分类器?

序列分类器(Sequence Classifier)是一种能够对序列中的每个单元(如单词、字母、音素、语素等)进行分类或标注的模型。换句话说,它不是对整个序列进行一个整体的分类,而是逐个单元地进行标注,最终给出序列中每个单元的标签。

例子:
  • 在**词性标注(POS Tagging)**中,输入序列是一个句子的单词序列,例如:

    • 输入:[“I”, “am”, “learning”, “AI”]
    • 输出(标注序列):[“PRP”, “VBP”, “VBG”, “NN”](分别表示代词、动词、动词进行时、名词)
  • 在**命名实体识别(NER)**中,输入序列是一个句子的单词序列,输出是每个单词的实体类别:

    • 输入:[“Apple”, “is”, “a”, “company”, “in”, “the”, “USA”]
    • 输出:[“B-ORG”, “O”, “O”, “O”, “O”, “O”, “B-LOC”](分别标记组织名和地点名)

这类任务要求模型不仅需要关注每个单元本身的特征,还需要结合上下文的序列信息,这正是序列分类器的主要应用场景。


正例和反例详细解释

为了更好地理解 HMM 和 MEMM 的特点,我会用一个实际任务(如词性标注)来对比两者的行为,并给出正例和反例说明。

任务背景:词性标注(POS Tagging)

目标:根据输入的单词序列,为每个单词标注正确的词性。

输入序列:[“The”, “dog”, “barks”]

真实输出序列(标签):[“DT”, “NN”, “VBZ”](分别表示限定词、名词、动词第三人称单数形式)


1. HMM 正例和反例

正例:

HMM 模型通过生成式建模,计算联合概率 P ( X , Y ) P(X, Y) P(X,Y),即同时考虑输入序列和标签序列的概率。

  1. 状态转移概率

    • P ( N N ∣ D T ) P(NN | DT) P(NNDT):表示当前词性为 NN(名词)时,前一个词性是 DT(限定词)的概率。
    • 假设在训练语料中,限定词后面经常跟名词,比如“the dog”、“a cat”,所以:
      P ( N N ∣ D T ) = 0.8 P(NN | DT) = 0.8 P(NNDT)=0.8
  2. 观测概率

    • P ( "dog" ∣ N N ) P(\text{"dog"} | NN) P("dog"NN):表示单词 “dog” 出现的条件是词性为 NN 的概率。
    • 如果 “dog” 在训练数据中多次作为名词出现,那么:
      P ( "dog" ∣ N N ) = 0.9 P(\text{"dog"} | NN) = 0.9 P("dog"NN)=0.9

最终:
P ( X , Y ) = P ( Y ) ⋅ P ( X ∣ Y ) = P ( D T ) ⋅ P ( "The" ∣ D T ) ⋅ P ( N N ∣ D T ) ⋅ P ( "dog" ∣ N N )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值