文章目录
工具+详解+版权所属@四季留歌
重要参考
CesiumGS/3d-tiles
一、glTF
二、3DTiles
1.3dTiles的特点
- 三维模型使用了 glTF 规范,继承它的渲染高性能。
- 3DTiles由tileset.json和tile组成,其中tile可以是.b3dm、.i3dm、.pnts、.vctr和.cmpt中的任一种格式文件。
- 除了嵌入的 glTF,3dTiles 自己 只记录各级Tile的空间逻辑关系(如何构成整个3dtiles)和属性信息,以及模型与属性如何挂接在一起的信息,不记录模型数据。
模型数据:三维模型的顶点、贴图材质、法线、颜色等信息。
逻辑关系:各级Tile是如何在空间中保持连续的,LOD是如何组织的。
2.一个简单的3dTiles数据示例
- 入口文件是 tileset.json,描述了整个三维瓦片数据集,记录“逻辑信息”,还包括一些其他的元数据。
- 各级瓦片用文件夹(目录)来组织,“属性信息”、“嵌入的gltf模型” 则位于各个二进制瓦片文件中,这些二进制文件则由 tileset.json 中的瓦片中的 uri 来引用。
- 数据集的名称与所在文件夹的名称并无关系,数据集的名称写在入口文件中。
- 瓦片只有两种情况:叶子瓦片(无子节点),非叶子瓦片。
3.Tileset——(三维)瓦片数据集——.json
- 通常,一个三维瓦片数据集(之后简称:一个3dtiles数据)的入口就是那个tileset.json。
顶级属性概览(必需):asset、root、geometricError
而通常来说,这个json必须存在以下几个顶级对象:
- asset:有关整个tileset的元数据,应用于特定程序的数据有glTF版本号,生成工具等。
- root:3D Tiles tileset中的根切片。
- geometricError:几何误差,表示简化后的切片/瓦片(tile)与原始几何图形的差异(米为单位)。
- 这个数值的大小能控制 LOD 的显示隐藏,且这个数值父级瓦片一定比子级瓦片大。
- tile的几何误差代表了该切片的选择指标,是一个非负值。
- 根tile是源几何体的最简化版本,将具有最大的几何误差,然后每个连续级别的子级别将具有比其父级更低的几何误差,其中叶子具有接近0的几何误差。
- 较高的几何误差意味着切片重新定义为更加细化的切片。
- Screen-Space Error(SSE),屏幕空间误差:如果渲染tile和其子节点没有内容,则会引入tile的源几何图形与简化后的图形之间的差异(以像素为单位)。
其他属性root、children、refine、content、boundingVolume
children
定义子切片的对象数组。
每个子切片内容都由其父切片的边界范围框完全包围,并且通常具有小于其父切片的几何误差。
对于叶子切片,此数组长度为零,并且可能未定义子切片。
3dTiles在空间上允许数据集使用如下几种树结构:
-
四叉树:适合高度上不太好切分的数据
-
八叉树:追求极致的空间分割和分级(例如点云数据)
-
KD树
-
格网结构
例如上面的children下有17个子节点,每个节点对应一个uri,与下面中的17个文件一一对应:
refine 细化
确定在选择较低分辨率的父平铺进行渲染时,该父平铺的渲染过程。
允许的优化类型有:
-
替换 (“REPLACE”),则子图块将代替父图块进行渲染,即不再呈现父图块。
-
附加 (“ADD”),除了父平铺之外,还会渲染子平铺。
省略时,继承父级切片的。
bounding volumes 边界范围框
每个子切片内容都由其父切片的边界范围框完全包围。
包含切片或其内容的边界框,只需要一个box、region或sphere。
- box —— number[12]
- region —— number[6]
- sphere —— number[4]
content
有关切片内容的元数据和指向内容的链接
viewer request volume 视图请求范围框
Tile——构成3dtiles的成员:瓦片/切片——.json
- tile是tileset的子集,所以一般也是.json后缀,里面包含可渲染内容的引用(即切片内容,如用uri)和元数据(如内容的边界范围框boundingVolume)。
tile content 切片内容
- 通常,瓦片对象会引用一个二进制的瓦片数据文件(也有例外),是渲染所需的二进制信息:
tile format 切片格式
有两大数据表:要素表/特征表Feature Table和批处理表Batch Table
tile info 切片信息
从瓦片内容可知,瓦片对象都有如下属性:
- boundingVolume:空间范围框,允许有box、sphere、region三种范围框,但是只能定义一种
- geometricError:几何误差
- content:瓦片内容,uri属性引用二进制瓦片数据文件。
瓦片还可以再引用 3dTiles 数据集,Tile不仅仅可以在其uri属性中引用 诸如 .b3dm、.i3dm、.pnts等二进制瓦片数据文件,还可以再引用一个 3dTiles!
- 其他属性:viewerRequestVolume、transform
没错,瓦片对象记录的就是瓦片的元数据,真正瓦片的本体数据在content所引用的二进制文件中。
坐标参考系 (CRS)
见下文。
4.数据与模型
- 3DTiles由tileset.json和tile组成,其中tile可以是.b3dm、.i3dm、.pnts、.vctr和.cmpt中的任一种格式文件。
- 除了嵌入的 glTF,3dTiles 自己 只记录各级Tile的空间逻辑关系(如何构成整个3dtiles)和属性信息,以及模型与属性如何挂接在一起的信息,不记录模型数据。
模型数据:三维模型的顶点、贴图材质、法线、颜色等信息,由gltf承担起来的(作为glb格式嵌入到瓦片二进制文件中)。
逻辑关系:各级Tile是如何在空间中保持连续的,LOD是如何组织的。
所以,“属性数据” 和 “模型” 是如何产生联系的呢?
使用了两个重要的表来记录这种 “模型与属性” 的联系:
- FeatureTable(要素表)
- BatchTable(批量表)
要素表、批量表都是以 二进制 形式存储。
tile瓦片二进制数据文件的大致字节布局结构(b3dm、i3dm、pnts)
除去cmpt这个复合类型不谈,前三种的大致布局见下图:
每一种瓦片二进制数据文件都有一个记录该瓦片的文件头信息,文件头包括若干个因瓦片不同而不太一致的数据信息。
- 当fileHead含有要素表时,fileHead还将包含featureTableJSONByteLength和featureTableBinaryByteLength uint32,用于提取功能表的每个相应部分。
- 当fileHead含有批次表时,fileHead还将包含batchTableJSONByteLength和batchTableBinaryByteLength uint32,用于提取功能表的每个相应部分。
FeatureTable,要素表 —— 记录渲染相关的数据
- 即描述了要素每个要素的位置和外观属性。
- 例如b3dm,每一个模型都是一个要素;例如pnts,每个点都是一个要素。
要素表的结构
- 填充:
- JSON头必须以包含的tile二进制文件中的8字节边界结束,必须使用后继空格字符0x20填充JSON头以满足字节对齐。
- 二进制body必须以包含的tile二进制文件中的8字节边界开始与结束,必须使用任何值的附加字节填充二进制体,以满足此要求。
- 二进制属性必须以字节偏移量开始,该字节偏移量是属性componentType的字节大小的倍数(参考glTF)。例如,FLOAT组件类型的属性每个元素有4个字节,因此开始位置的偏移量必须是4的倍数。为了满足此要求,必须在前面的二进制属性中填充其他任意值的字节。
- JSON头:
- 二进制体:
BatchTable,批次表 —— 记录属性数据
-
如果把批次表删掉,那么 3DTiles 数据还能正常渲染。因为在3dtiles布局中:
-
记录的是每个模型的属性数据,以及扩展数据(扩展数据以后再谈)。
-
批次表就是所谓的模型属性表,批次表中每个属性数组的元素个数 == 模型的个数,即一个数组代表一种属性,每一种属性的元素和每一个模型一 一对应。
其实也有例外的情况,有关 3DTiles 数据规范的扩展能力。
- 要素表和批次表唯一的联系就是 BATCH_LENGTH(每一个batch为一个要素,即代表批次表中每种属性的元素个数),在 i3dm 中叫 INSTANCE_LENGTH,在 pnts 中叫 POINTS_LENGTH(每一个点为一个要素)。
批次表的结构
- 填充:和特征表一样
- Batch Table 由两部分组成:JSON 标头和可选的 little endian 二进制正文。
- JSON头:
JSON 描述属性,其值可以直接在 JSON 中定义为数组,也可以引用二进制正文中的部分。在二进制体中存储长数值数组效率更高。
- 二进制体:
扩展数据(extensions)与额外补充信息(extras)(后补)
其实,无论是要素表,还是批量表,都允许在 JSON 中存在扩展数据,以扩充当前瓦片模型的功能,而并不是单一的一个一个模型顺次存储在瓦片文件、glb 中。
三、b3dm——tile二进制数据文件结构
- B3dm,Batched 3D Model,成批量的三维模型的意思,允许对异构3D模型(例如城市中的不同模型建筑物)批处理。
- 倾斜摄影数据(例如osgb)、BIM数据(如rvt)、传统三维模型(如obj、dae、3dMax制作的模型等),均可创建此类瓦片。
- 每个模型属性(例如ID)在运行时能够识别和更新各个模型。
Header和body
Feature Table
要素表,记录的是整个瓦片渲染相关的数据,而不是渲染所需的数据(glb中)。
- 全局属性:
属性名 | 属性数据类型 | 属性描述 | 是否必需 |
---|---|---|---|
BATCH_LENGTH | uint32 | 当前瓦片文件内三维模型(BATCH、要素)的个数 | yes |
RTC_CENTER | float32[3] | 如果模型的坐标是相对坐标,那么相对坐标的中心即此 | no |
注意,如果glb模型并不需要属性数据,即要素表和批量表有可能是空表,那么 BATCH_LENGTH 的值应设为 0 .
- 要素属性:
BatchTable
{
"height" : {
"byteOffset" : 0,
"componentType" : "FLOAT",//4
"type" : "SCALAR"//1
},
"geographic" : {
"byteOffset" : 40,
"componentType" : "DOUBLE",
"type" : "VEC3"
},
}
从上表可以看出,height 属性跨越 0 ~ 39 字节,一共40个字节.
通过 FeatureTableJSON 可以获取 BATCH_LENGTH 为10,那么就有10个模型,对应的,这 40 个字节就存储了10个 height 值。即FLOAT类型的数据字节长度为 4,刚好 4 byte × 10 = 40 byte,即 height 属性的全部数据的总长。
不写二进制本体数据:
{
"height": [10.0, 20.0, 15.0, ...], // 太长了不写那么多,一共10个
"geographic": [
[113.42, 23.10, 102.1],
[111.08, 22.98, 24.94],
// 太长不写
]
}
- 同样是一个数字,二进制的JSON文本大多数时候体积会比二进制数据大。
- 对于属性的值类型是 JSON 中的 object、string、bool 类型,则必须存于 JSON 中,因为二进制体只能存 标量、234维向量四种类型的数字数据。
tiny_gltf(解析osgverse内容)——可读取b3dm(后补)
四、pnt——tile二进制数据文件结构
Header和body
- pnts瓦片文件不内嵌 glTF 模型,故结构如下:
Feature Table
- 全局属性:
属性名 | 属性数据类型 | 属性描述 | 是否必需 |
---|---|---|---|
POINTS_LENGTH | uint32 | 瓦片中点的数量。所有的点属性的长度必须与这个一样 | yes |
QUANTIZED_VOLUME_OFFSET | float32 * 3 | 量化偏移值 | 与QUANTIZED_VOLUME_SCALE属性必须同时存在或同时不存在 |
QUANTIZED_VOLUME_SCALE | float32 * 3 | 量化缩放比例 | 与QUANTIZED_VOLUME_OFFSET属性必须同时存在或同时不存在 |
CONSTANT_RGBA | uint8 * 4 | 为所有点定义同一个颜色,默认是灰色 | no |
BATCH_LENGTH | uint32 | 当前瓦片文件内三维模型(BATCH、要素)的个数 | yes |
RTC_CENTER | float32[3] | 如果模型的坐标是相对坐标,那么相对坐标的中心即此 | no |
BATCH_LENGTH 的意义是:点云瓦片中这么多点是可以划分的,每一类叫做 BATCH。
例如对一栋建筑进行点云扫射,那么墙体的所有的点可以归属为 墙体BATCH,窗户的所有点可以归属为 窗户BATCH。
BATCH_LENGTH 指示了当前pnts瓦片的点被划分成了多少个类别。
1.pnts瓦片中颜色的优先级
RGBA>RGB>RGB565>CONSTANT_RGBA。其中,CONSTANT_RGBA 是全局的,前三个是点要素属性里的。
当然,还可以使用 3dTiles 的 style 来改变样式。
2.QUANTIZED_VOLUME量化空间范围体
通常点云数据只留其“形”,而具体每个点的坐标可以不那么精确。
每个瓦片,都有它自己的空间范围,为了节约数据占用,可以使用相对坐标来记录每个 instance 的位置,也即记录全局属性中的 RTC_CENTER 属性。
但是,即便用了相对坐标,instance 的坐标值仍然是 FLOAT 类型,占 4字节。
例如,如何将 (16464, 2172, 63312) 这个量化的坐标映射回瓦片原本的坐标呢?参考公式:
即量化坐标 PositionQuantized 各个坐标分量乘上缩放因子( Scale / 65535 ),然后加偏移坐标即可。
三个方向的缩放因子 QUANTIZED_VOLUME_SCALE:float[3] 和 偏移量 QUANTIZED_VOLUME_OFFSET:float[3] 作为全局属性写在要素表JSON中。
如果这两个全局属性未定义,则 逐要素属性中的 POSITION_QUANTIZED 这个量化坐标也不会存在,即使用原有的 float 类型坐标记法。
需要注意的是,量化坐标和普通坐标只能二选一。
- 要素属性/逐要素(每个点)属性:
属性名 | 属性数据类型 | 属性描述 | 是否必需 |
---|---|---|---|
POSITION | float32 * 3 | 直角坐标的点 | yes ,除非POSITION_QUANTIZED属性存在 |
POSITION_QUANTIZED | uint16 * 3 | 量化空间范围体内的直角坐标点 | 是,除非POSITION属性存在;与QUANTIZED_VOLUME_SCALE和QUANTIZED_VOLUME_OFFSET必需同时存在。 |
RGBA | uint16 * 3 | 量化空间范围体内的直角坐标点 | no |
RGB | uint8 * 3 | RGB颜色 | no |
RGB565 | uint16 | 有损压缩颜色,红5绿6蓝5,即65536种颜色 | no |
NORMAL | float32 *3 | 法线 | no |
NORMAL_OCT16P | uint8 * 2 | 点的法线,10进制单位向量,有16bit精度 | no |
BATCH_ID | uint8/uint16(默认)/uint32 | 从BatchTable种检索元数据的id | 不必须,取决于全局属性BATCH_LENGTH |
例子
//只有点坐标
const featureTableJSON = {
POINTS_LENGTH : 4, // 意味着有4个点
POSITION : {
byteOffset : 0 // 意味着从ftBinary的第0个byte开始读取
}
}
const featureTableBinary = new Buffer(new Float32Array([
0.0, 0.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
1.0, 0.0, 1.0
]).buffer)
//相对坐标与颜色信息
const featureTableJSON = {
POINTS_LENGTH : 4, // 意味着有4个点
RTC_CENTER : [1215013.8, -4736316.7, 4081608.4], // 意味着相对于这个点
POSITION : {
byteOffset : 0 // 意味着从ftBinary的第0个byte开始读取
},
RGB : {
byteOffset : 48 // 颜色值意味着从ftBinary的第48个byte读取,紧接在POSITION后
//4字节*3分量*4个点 = 48字节
}
}
// Nodejs Buffer
const positionBinary = new Buffer(new Float32Array([
0.0, 0.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
1.0, 0.0, 1.0
]).buffer) // 一共12*4byte = 48byte
const colorBinary = new Buffer(new Uint8Array([
255, 0, 0,
0, 255, 0,
0, 0, 255,
255, 255, 0,
]).buffer) // 一共12*1byte = 12byte
// ftBinary一共48+12=60byte
const featureTableBinary = Buffer.concat([positionBinary, colorBinary])
// 量化坐标与八进制编码法向量
const featureTableJSON = {
POINTS_LENGTH : 4, // 意味着有4个点
QUANTIZED_VOLUME_OFFSET : [-250.0, 0.0, -250.0], // 意味着偏移基坐标是 (-250, 0, -250)
QUANTIZED_VOLUME_SCALE : [500.0, 0.0, 500.0], // 意味着x和z方向的缩放比是500
POSITION_QUANTIZED : {//uint16 * 3
byteOffset : 0 // 意味着量化坐标的数据存在ftBinary的第0个字节往后
},
NORMAL_OCT16P : {//uint8 * 2
byteOffset : 24 // 意味着量化坐标顶点法线的数据存在ftBinary的第24个字节往后
}
}
const positionQuantizedBinary = new Buffer(new Uint16Array([
0, 0, 0,
65535, 0, 0,
0, 0, 65535,
65535, 0, 65535
]).buffer) // 一共2byte*3分量*4个点=24byte
const normalOct16PBinary = new Buffer(new Uint8Array([
128, 255,
128, 255,
128, 255,
128, 255
]).buffer) // 一共8*1=8byte,Uint8=8bit=1byte
const featureTableBinary = Buffer.concat([positionQuantizedBinary, normalOct16PBinary])
//点数据分类(BATCH)/ Batched points 批处理点
const featureTableJSON = {
POINTS_LENGTH : 4, // 意味着有4个点
BATCH_LENGTH : 2, // 意味着4个点分成了2类(批、batch)
POSITION : {
byteOffset : 0 // 意味着POSITION将存储在ftBinary的第 0 byte之后
},
BATCH_ID : {
byteOffset : 48, // 意味着BATCH_ID的值将从ftBinary的第 48 byte之后
componentType : "UNSIGNED_BYTE" // 意味着BATCH_ID的值类型是无符号字节数
}
}
const positionBinary = new Buffer(new Float32Array([
0.0, 0.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
1.0, 0.0, 1.0
]).buffer) // 4个点,一共12个值,每个值4byte(Float每个数字占4byte,即32bit),一共48byte
const batchIdBinary = new Buffer(new Uint8Array([
0,
0,
1,
1
]).buffer) // 前2个点属于batchId = 0的batch。
const featureTableBinary = Buffer.concat([positionBinary, batchIdBinary]); // 合并
const batchTableJSON = {
names : ['object1', 'object2']
} // 批量表JSON记录了属性值,有两个,刚好对上 BATCH_LENGTH
// 每个点都有属性
const featureTableJSON = {
POINTS_LENGTH : 4, // 意味着有4个点
POSITION : {
byteOffset : 0 // 意味着从ftBinary的第0byte开始
}
}
const featureTableBinary = new Buffer(new Float32Array([
0.0, 0.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
1.0, 0.0, 1.0
]).buffer)
const batchTableJSON = {
names : ['point1', 'point2', 'point3', 'point4'] // 意味着这4个点都有names属性,其值写在这里
}
BatchTable
- 批量表与b3dm的差不多,如果在 pnts 的要素表和批量表中存储了 BATCH_LENGTH 信息,那每个 BATCH 的属性就存于此。
- 但是与 b3dm、i3dm 略有不同的是,如果要素表JSON中没有 BATCH_ID 的定义,但是批量表中却存在与点的数量 POINTS_LENGTH 一样长的属性数组,那么说明该点云瓦片的每一个点都有属性。
参考b3dm的BatchTable。
五、坐标系
3D Tiles 本地坐标系使用右手 3 轴 (x, y, z) 笛卡尔坐标系;也就是说,x 和 y 的叉积得到 z。3D Tiles 将 z 轴定义为本地笛卡尔坐标系的 up(另请参阅坐标参考系统)。
- 瓦片集的全局坐标系通常位于 WGS 84 以地球为中心、地球固定 (ECEF) 参考框架,一般使用编码 (地心,EPSG 4978,Axes: Geocentric X, Geocentric Y, Geocentric Z (X,Y,Z). Directions: geocentricX, geocentricY, geocentricZ. UoM: metre.) 或先地理,EPSG:4326,Axes: Geodetic latitude, Geodetic longitude (Lat,Lon). Directions: north, east. UoM: degree.,转换SRS请根据具体数据类型选择编码。
- 3D Tiles默认使用的坐标系是地心地固坐标系(Earth-Centered, Earth-Fixed,简称ECEF),该坐标系的原点位于地球质心,主要轴如下:
X轴指向通过赤道和格林威治本初子午线的平面。
Y轴指向通过赤道并与X轴垂直的平面。
Z轴指向北极。
这种坐标系的优点是它与地球自转同步,适用于表示全球范围的三维地理数据。- 地心转地理:
- 可以使用osg::EllipsoidModel::convertXYZToLatLongHeight
- 或者osgEarth::SpatialRefence::transfromFromWorld,world代表地心。
- 地理转utm:
- 可以使用osgEarth::GeoPoint
- 也可以使用osgEarth::SpatialRefence
- 在GIS坐标系统有介绍水平和垂直基准的编码以供参考。
- rtc_center(Relative to Center)是一个用于优化精度的特性,可以使大规模地理数据在Web端高效渲染。这种方法主要用于减少与地心坐标系中的双精度浮点数有关的精度问题。使用 RTC_CENTER 时,坐标系的原点会平移到一个本地的中心点,从而降低坐标值的数量级,提升精度和计算效率。
- 在osg中加载,rtc_center需要坐标变换:
(x,y,z) -> (x,z,-y)
。- 此时如果使用的是region,则需地理转地心:需要将每一个点坐标变换:
(x,y,z) -> (x,z,-y)
。其他例如用box,一般是地心坐标系,就不用转。- 此时如果还要将地心转成utm:则需要将传入从地心转成地理的地心数据前,先坐标转换
(x,y,z) -> (x,-z,y)
。其他例如用box,同理就不用转。
- 当使用区域边界框region时,使用地理坐标系(纬度,经度,高度)指定边界,常是EPSG 4979,Axes: Geodetic latitude, Geodetic longitude, Ellipsoidal height (Lat,Lon,h). Directions: north, east, up. UoM: degree, degree, metre.或EPSG:4329,Axes: Geodetic latitude, Geodetic longitude, Ellipsoidal height (Lat,Long,h). Directions: north, east, up. UoM: degree minute second hemisphere, degree minute second hemisphere, metre.。
GIS——地理空间数据_坐标系统
- 地理空间数据涉及空间要素的位置。我们可以使用地理坐标或投影坐标系
统来确定地球表面空间要素的位置。
地理坐标系统以经度和纬度表示,而投影坐标系以 x、y 坐标表示。
- 许多投影坐标系统可在 GIS 中使用。例如,统一横轴墨卡托(UTM)格网
系统,将 84°N 与 80°S 之间的地球表面划分为 60 个地带。GIS 的基本原则是,表示不同
地理空间数据的图层必须在空间上相互匹配,换言之,它们必须基于相同的坐标系统。
- 更多见另一篇文章:GIS坐标系统