Self-Supervised Deep Blind Video Super-Resolution

在这里插入图片描述
论文地址:https://arxiv.org/abs/2201.07422

  • 提出了一种有效的视频SR自监督学习算法,该算法不需要任何成对或不成对的数据集作为监督为了约束视频SR的深层模型
  • 我们开发了一种简单有效的方法,根据视频SR的图像形成,从原始LR输入视频中生成辅助配对数据
  • 这是第一个基于自监督学习的盲视频SR算法,以端到端的方式对我们的方法进行训练,并表明它在基准数据集和真实视频上都产生了良好的结果。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
K i K_i Ki是原始LR输入模糊核的结果, L k L_k Lk是模糊模型的损失

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在真实的LR视频上测试
在这里插入图片描述
模型参数量
在这里插入图片描述
模糊核估计欠佳
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bugcoder-9905

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值