李群与李代数

群(group)是一种代数结构,由两部分(一个集合 与一种运算 )构成,可以记作,并且群满足如下条件:

由上面我们可以知道了群的定义,下面例举几个群:

  • 一般线性群: n×n的可逆矩阵矩阵乘法构成一个群,幺元E矩阵

  • 旋转矩阵群: 旋转矩阵与矩阵乘法构成的一个群,满足上面任何一个性质,幺元是旋转角度0的矩阵。 

  • 特殊欧式群: 欧式变换矩阵(旋转加平移)与矩阵乘法也构成一个群,它的幺元是旋转角度为0,平移也是0的变换矩阵。

  • 相似变换群: 相似变换就是在旋转矩阵上再加上尺度变换,这个群主要会在单目视觉中使用,因为单目具有尺度不确定性。如果在单目slam中使用来表示位姿,那么由于尺度不确定性与尺度漂移,整个slam过程中尺度会发生变化,而这在中不能体现出来。所以在单目视觉中,我们一般在相似变换群上来进行位姿的优化。

李群

李群是指具有连续性质的群。比如向整数群Z那样的离散的群就没有连续性质,所以不是李群。而是李群

李代数

每个李群都有与之对应的李代数李代数描述了李群局部性质

通常李代数由一个集合V,一个数域F和一个二元运算[]组成。通常如果我们说是一个李代数,那么它具有如下性质:

  • 封闭性: 

  • 双线性:,有 

  • 自反性: 

  • 雅可比等价: 

通常我们成李代数中的二元运算李括号。相比于群中较为简单的二元运算,李括号通常的含义是计算集合中两个元素的差异。一般它不要求结合律,但是满足反对称性,以及元素和自己做李括号之后为0的性质。一个典型的例子是是一个李代数。

三维旋转群与其对应的李代数

三维旋转群描述三维空间中的旋转,其集合元素为3×3的正交且行列式为1的矩阵R,我们知道。如果将R看作一个随着时间t变化的函数R(t),则有。在等式两边分别对时间求导,可以得到:

对上式进行整理,可以得到:

从上面的公式我们可以看出是一个反对称矩阵

反对称矩阵与叉乘

对于三维向量a与b之间的外积,其中,如下公式:


回到刚才的话题,对于这个反对称矩阵,我们将其记为A。可以将其对应到一个向量

上式也就可以写做

将上式左右各右乘,由于R是正交的,所以有

由上式我们可以发现,每次对旋转矩阵求导数,只需要左乘一个ϕ矩阵即可。这表明ϕ反映了R的导数性质,所以称其在正切空间上。同时对上面微分方程进行求解,我们可以得到


由上我们可以知道,三维旋转群与其对应的李代数(三维向量,实数,外积运算),这个李代数的集合由三维向量组成,每个向量对应到一个反对称矩阵,可以表达旋转矩阵的导数。它描述了三维旋转群局部性质

此处我们发现对应的李代数是定义在上的向量,我们记作ϕ(注意这是个向量,虽然希腊字母的粗体不明显)。而每个ϕ都可以生成一个反对称矩阵:

在此定义下,两个向量的李括号运算对应的反对称矩阵运算为:

由于向量与其对应的反对称矩阵关系密切,所以我们说旋转矩阵群的李代数的元素是3维向量或者3维反对称矩阵,都是可以的。


上的指数映射

首先,任意矩阵的指数映射可以写成一个泰勒展开,当然,只有在收敛的情况下才会有结果,其结果仍然是一个矩阵。

同样,对中任意一个元素ϕ,它的指数映射是:

仔细推导这个定义,首先ϕ是一个三维向量,我们可以定义它的模长方法,分别记作(注意此处的是一个单位长度的向量),于是有,首先此处说明的是,具有如下两条性质:

上述性质有时间可以尝试证明一下,利用这两个性质,我们可以进行如下推导:

记住最后的这个公式:

这时罗德里格斯公式,这个公式本身的作用是将旋转向量变换成旋转矩阵。所以从这里我们知道实际上是由旋转向量组成的空间。而指数映射就是罗德里格斯公式映射,通过他们我们可以将中的任意一个旋转向量对应到一个中的一个旋转矩阵。

这里需要提到的一点是,指数映射不是一个双射,但他是一个满射。这一意味着每一个旋转矩阵都可以找到一个向量与之对应,但是可能存在多个向量对应到同一个矩阵。这个很好理解,因为旋转角度具有周期性,多转360度效果一样。

同理,指数映射作用是从向量到矩阵的映射,反过来,从矩阵到向量的映射是对数映射

三维欧式群与其对应的李代数

首先,列出三维欧式群的定义:

由于每个欧式变换矩阵具有六个自由度,所以其对应的李代数位于中:

不过需要注意的是,此处我们对的作用进行拓展,使得其不再是一个反对称关系,而是将一个六维度向量转换成四维矩阵。如下:

其中,前三维是平移分量,后三位为旋转分量,这个分量是的元素。在此处,该李代数对应的微分方程是:

三维欧式群及其李代数的指数与对数映射类似。

总结

其中,J是雅克比矩阵,这个矩阵是在SE(3)上的指数映射中,平移部分经过指数映射后,发生了一次以J为系数矩阵的线性变换。旋转部分的指数映射还是罗德里格斯公式。

 

 

 

 

 

 

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值