【YOLOv9教程】如何使用YOLOv9进行图像与视频检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【车辆检测追踪与流量计数系统
49.【行人检测追踪与双向流量计数系统50.【基于YOLOv8深度学习的反光衣检测与预警系统
51.【危险区域人员闯入检测与报警系统52.【高密度人脸智能检测与统计系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

img

介绍

在之前的博客文章中,我们介绍了如何使用 YOLOv8 进行对象检测。这篇文章则主要介绍如何使用YOLOv9进行图像与视频检测

YOLOv9 与其前身一样,专注于识别和精确定位图像和视频中的对象。自动驾驶汽车、安全系统和高级图像搜索等应用在很大程度上依赖于此功能。YOLOv9 引入了比 YOLOv8 更令人印象深刻的创新点。

使用 YOLOv9 处理图像和视频

步骤 1:安装必要的库

pip install opencv-python ultralytics

第 2 步:导入库

import cv2
from ultralytics import YOLO

第 3 步:选择模型型号尺寸

model = YOLO("yolov9c.pt")

这里,我们选择了 yolov9c.pt。大家可以选择不同的模型尺寸进行检测,并比较不同的型号并权衡它们各自的优缺点。

第 4 步:编写一个函数来预测和检测图像和视频中的对象

def predict(chosen_model, img, classes=[], conf=0.5):
    if classes:
        results = chosen_model.predict(img, classes=classes, conf=conf)
    else:
        results = chosen_model.predict(img, conf=conf)

    return results

def predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):
    results = predict(chosen_model, img, classes, conf=conf)
    for result in results:
        for box in result.boxes:
            cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
                          (int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)
            cv2.putText(img, f"{result.names[int(box.cls[0])]}",
                        (int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
                        cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)
    return img, results

predict() 功能

此函数采用三个参数:

  • chosen_model :用于预测的训练模型
  • img :要进行预测的图像
  • classes :(可选)要将预测筛选到的类名列表
  • conf :(可选)要考虑的预测的最小置信度阈值

该函数首先检查是否提供了 classes 参数。如果是,则使用 classes 参数调用该chosen_model.predict() 方法,该参数仅将预测筛选为这些类。否则,将调用该 chosen_model.predict() 方法时不带 classes 参数,该参数将返回所有预测。

conf 参数用于筛选出置信度分数低于指定阈值的预测。这对于消除误报很有用。

该函数返回预测结果列表,其中每个结果都包含以下信息:

  • name :预测类的名称
  • conf :预测的置信度分数
  • box :预测对象的边界框

predict_and_detect() 功能

此函数采用与 predict() 函数相同的参数,但除了预测结果外,它还返回带注释的图像。

该函数首先调用该 predict() 函数以获取预测结果。然后,它循环访问预测结果,并在每个预测对象周围绘制一个边界框。预测类的名称也写在边界框上方。

该函数返回一个包含带注释的图像和预测结果的元组。

以下是这两个函数之间差异的摘要:

  • predict() 函数仅返回预测结果,而该 predict_and_detect() 函数还返回带注释的图像。
  • predict_and_detect() 函数是 predict() 函数的包装器,这意味着它在内部调用函数 predict()

第 5 步:使用 YOLOv9 检测图像

# read the image
image = cv2.imread("YourImagePath")
result_img, _ = predict_and_detect(model, image, classes=[], conf=0.5)

如果要检测特定类,只需在类列表classes中输入对象的 ID 号即可。

第 6 步:保存并绘制结果图像

cv2.imshow("Image", result_img)
cv2.imwrite("YourSavePath", result_img)
cv2.waitKey(0)

第 7 步:使用 YOLOv9 检测视频

video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:
    success, img = cap.read()
    if not success:
        break
    result_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)
    cv2.imshow("Image", result_img)
    
    cv2.waitKey(1)

第 8 步:保存结果视频

# 定义保存函数
def create_video_writer(video_cap, output_filename):
    # grab the width, height, and fps of the frames in the video stream.
    frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(video_cap.get(cv2.CAP_PROP_FPS))
    #初始化
    fourcc = cv2.VideoWriter_fourcc(*'MP4V')
    writer = cv2.VideoWriter(output_filename, fourcc, fps,
                             (frame_width, frame_height))
    return writer

只需使用上面的函数和代码即可

output_filename = "YourFilename"
writer = create_video_writer(cap, output_filename)

video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:
    success, img = cap.read()
    if not success:
        break
    result_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)
    writer.write(result_img)
    cv2.imshow("Image", result_img)
    
    cv2.waitKey(1)
writer.release()

结论

在本文中,我们学习了如何使用 YOLOv9 检测图像和视频中的对象。如果您觉得此代码有用,感谢点赞关注。

引用

YOLOv9论文:https://arxiv.org/abs/2402.13616
YOLOv9 源码地址:https://github.com/WongKinYiu/yolov9


关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【开源】可获取更多学习资源

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

基于YOLOv9实现人脸、眼睛、嘴巴识别检测系统python源码+详细运行教程+训练好的模型+评估指标曲 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值