YoLov9目标检测算法的使用

本文详细介绍了YOLOv9目标检测算法的使用流程,从环境安装、数据集准备、模型训练到问题处理,涵盖了创建虚拟环境、安装依赖、数据集划分、模型结构配置、预训练权重下载、训练验证及常见错误处理等关键步骤。
摘要由CSDN通过智能技术生成

目录

一、环境安装

1、创建虚拟环境

2、安装依赖库

二、数据集准备

1、数据集的文件名

2、划分数据集

3、配置数据文件

4、修改模型结构文件的类别

5、下载模型预训练权重

三、训练

1、训练的三个文件介绍

2、训练

3、验证

4、检测单张图片

四、附录

1、训练参数

2、验证参数

3、预测参数

4、训练模型权重 YOLOv9.pt 重新参数化轻量转为 YOLOv9-converted.pt

5、FPS如何得到

五、报错处理

1、提示:AttributeError: 'FreeTypeFont' object has no attribute 'getsize'

2、提示:libGL.so.1: cannot open shared object file: No such file or directory

3、训练的P、R、mAP等均为0

4、运行detect.py提示:AttributeError: 'list' object has no attribute 'device


一、环境安装

1、创建虚拟环境

conda create -n yolov9 python=3.8
 
# 激活yolov9 env
conda activate yolov9

2、安装依赖库

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

如果是已经存在的torch环境安装,可以在requirements.txt文件中删掉torch后安装(避免安装的不是GPU版本)

二、数据集准备

1、数据集的文件名

在代码根目录下,新建一个datasets的文件夹,并对这个文件夹新建下面三个文件夹,并放入对应的数据。

  • Annotations里面存放标签xml文件。
  • JPEGImage 里面存放原始图片。
  • labels文件夹里面存放的是标签txt文件(YOLO用的也是这种类型的标签)。这个文件夹里的文件是通过脚本生成的。

yolo的标签格式,即:

2、划分数据集

根据代码划分训练集、验证集,且每个文件夹下面对应图像和标签

3、配置数据文件

  • 类型1:直接指向图像所在(该文件夹包括图像和标签)---本人推荐采用这种方式

格式类型:

datasets/dataset_split/
├─train
│	├──images	
│	└──labels
├──test
│	├──images	
│	└──labels
└─val
	├──images	
	└──labels

划分代码:

import os
import random
import shutil
 
# 原数据集目录
root_dir = 'dataset_fire/'
# 划分比例
train_ratio = 0.8
valid_ratio = 0.1
test_ratio = 0.1
 
# 设置随机种子
random.seed(42)
 
# TODo 这里按照实际数据集路径去修改
split_dir = 'dataset_fire_split/'
os.makedirs(os.path.join(split_dir, 'train/images'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'train/labels'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'val/images'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'val/labels'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'test/images'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'test/labels'), exist_ok=True)
 
# TODo 这里按照实际数据集路径去修改
imgpath = "JPEGImages"
labelpath = "labels"
image_files = os.listdir(os.path.join(root_dir, imgpath))
label_files = os.listdir(os.path.join(root_dir, labelpath))
 
# 随机打乱文件列表
combined_files = list(zip(image_files, label_files))
random.shuffle(combined_files)
image_files_shuffled, label_files_shuffled = zip(*combined_files)
 
# 根据比例计算划分的边界索引
train_bound = int(train_ratio * len(image_files_shuffled))
valid_bound = int((train_ratio + valid_ratio) * len(image_files_shuffled))
 
# 将图片和标签文件移动到相应的目录
for i, (image_file, label_file) in enumerate(zip(image_files_shuffled, label_files_shuffled)):
    if i < train_bound:
        shutil.move(os.path.join(root_dir, imgpath, image_file), os.path.join(split_dir, 'train/images', image_file))
        shutil.move(os.path.join(root_dir, labelpath, label_file), os.path.join(split_dir, 'train/labels', label_file))
    elif i < valid_bound:
        shutil.move(os.path.join(root_dir, imgpath, image_file), os.path.join(split_dir, 'valid/images', image_file))
        shutil.move(os.path.join(root_dir, labelpath, label_file), os.path.join(split_dir, 'valid/labels', label_file))
    else:
        shutil.move(os.path.join(root_dir, imgpath, image_file), os.path.join(split_dir, 'test/images', image_file))
        shutil.move(os.path.join(root_dir, labelpath, label_file), os.path.join(split_dir, 'test/labels', label_file))

在datasets目录下新建数据的配置文件fire.yaml,内容如下:(直接指向数据所在地)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/dataset_split # dataset root dir
train: train # train images
val: val # val images
test: test # test images (optional) 

# Classes
names:
  0: anti-glaring_board
  • 类型2:直接指向划分好的txt文件(该文件包括图像路径)

格式类型:

datasets/
├─train.txt
├─val.txt
├─test.txt
├─images
│	├──train
│	│	├──xxx.jpg		
│	│	└──xxx.jpg		
│	├──test
│	│	├──xxx.jpg		
│	│	└──xxx.jpg		
│	└──val
│		├──xxx.jpg		
│		└──xxx.jpg	
└──labels
	├──train
	│	├──xxx.txt	
	│	└──xxx.txt			
	├──test
	│	├──xxx.txt	
	│	└──xxx.txt			
	└──val
		├──xxx.txt			
		└──xxx.txt	

划分代码:

import os  
import shutil  
from sklearn.model_selection import train_test_split  
import copy 
# 设置数据文件夹路径  
image_dir = "./images"  
label_dir = "./labels"  

# 获取image和label文件夹中的所有文件名  
image_files = os.listdir(image_dir)  
label_files = os.listdir(label_dir)  

# 确保image和label文件夹中的文件数量相同  
assert len(image_files) == len(label_files), "Number of image and label files must be t he same!"  
  
# 将文件名组合为一个列表 
label_files=copy.copy(image_files)
for i in range(len(label_files)):
    label_files[i]=label_files[i].replace(".png",".txt")

files = list(zip(image_files, label_files))  

# 划分数据为训练集和测试集(这里还包括验证集,但你可以根据需要调整比例)  

train_files, temp_files = train_test_split(files, test_size=0.4, random_state=42)  # 假设40%为测试集  
valid_files, test_files = train_test_split(temp_files, test_size=0.5, random_state=42)  # 剩下的50%中,再取50%为验证集  
print("测试集长度:"+str(len(test_files)))
print("训练集长度:"+str(len(train_files)))
print("验证集长度:"+str(len(valid_files)))



# 创建目录(如果它们不存在)  
os.makedirs(image_dir + "/train", exist_ok=True)  
os.makedirs(image_dir + "/test", exist_ok=True)  
os.makedirs(image_dir + "/val", exist_ok=True)  
os.makedirs(label_dir + "/train", exist_ok=True)  
os.makedirs(label_dir + "/test", exist_ok=True)  
os.makedirs(label_dir + "/val", exist_ok=True)  
  
# 移动文件到相应的目录  
for img, lbl in train_files:  
    shutil.move(os.path.join(image_dir, img), os.path.join(image_dir + "/train", img))  
    shutil.move(os.path.join(label_dir, lbl), os.path.join(label_dir + "/train", lbl))  
  
for img, lbl in test_files:  
    shutil.move(os.path.join(image_dir, img), os.path.join(image_dir + "/test", img))  
    shutil.move(os.path.join(label_dir, lbl), os.path.join(label_dir + "/test", lbl))  
  
for img, lbl in valid_files:  
    shutil.move(os.path.join(image_dir, img), os.path.join(image_dir + "/val"
YOLO(You Only Look Once)是一种流行的实时目标检测系统,以其高效率和准确性著称。截至我知识的截止日期(2023年),YOLO已经发展到了多个版本,但尚未发布YOLO v9。因此,关于YOLO v9的推理部署信息目前是不存在的。不过,我可以为你介绍一般的YOLO模型推理部署流程: 1. 模型准备:首先需要获取YOLO模型的权重文件,通常是训练完成后保存的`.weights`文件,以及对应的配置文件,可能是`.cfg`或`.yml`格式,用于定义网络结构。 2. 环境搭建:根据模型的训练和部署环境需求,设置相应的深度学习框架,如PyTorch、TensorFlow或Darknet等,并安装所有必要的依赖库。 3. 模型转换:如果推理使用的是与训练框架不同的框架,需要将模型转换为推理框架所支持的格式。例如,如果你使用的是PyTorch训练的模型,但想要使用ONNX Runtime进行推理,那么就需要将模型导出为ONNX格式。 4. 推理代码编写:编写推理代码,加载模型,预处理输入图像(如缩放到模型所需尺寸、归一化等),然后将处理后的图像数据送入模型进行预测。 5. 结果处理:将模型输出的结果进行后处理,包括将检测框的坐标和置信度映射回原图尺寸、非极大值抑制(NMS)以去除重叠的检测框、类别判断等。 6. 可视化输出:最后将处理后的检测结果标注在原图上,以可视化的形式展现给用户。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清纯世纪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值