YOLO发展历程以及YOLOv8详解:基本架构、创新点与应用

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

摘要

由Ultralytics推出的YOLOv8模型是一种最先进的物体检测系统,旨在以高精度和速度处理图像。它建立在以前的YOLO版本的成功基础上,结合了CSPDarknet 53骨干,结合路径聚合网络(PANet)颈部的特征金字塔网络(FPN),以及用于直接对象中心预测的无锚头。这种架构使YOLOv8在检测各种大小和复杂性的对象方面表现出色。该模型有五种变体(n,s,m,l,x),以满足不同的计算环境,从边缘设备到高端GPU。YOLOv8的增强功能包括先进的数据增强技术、自适应训练和对多个主干的支持,使其成为医疗诊断、自动驾驶、零售分析和安全系统等广泛应用的通用工具。

引言

在深度学习技术进步的推动下,物体检测领域正在经历快速增长。最近的突破导致开发出能够以无与伦比的精度处理复杂数据的复杂模型。在这些创新中,YOLOv8已经成为游戏规则的改变者。本文将探讨YOLOv8的架构和应用程序,探索其:

  • 先进的目标检测功能
  • 模型结构
  • yolov 8的现实应用

YOLO及其演变

YOLO(You Only Look Once)是一种卷积神经网络(CNN),旨在实现快速实时目标检测,以其速度和准确性而闻名。约瑟夫雷德蒙等他们在2015年的论文《You Only Look Once:Unified,Real-Time Object Detection》中发表了这篇论文。

与依赖于两个阶段的传统模型(例如,R-CNN系列),YOLO在单次通过中处理图像。它将图像划分为网格,并预测每个网格单元的边界框和类概率。
在这里插入图片描述

自成立以来,YOLO不断发展,Ultralytics接管了YOLO模型的开发,推出了几个版本(如yolov 5,YOLOv 8和YOLO 11),在准确性,速度和性能方面都有所改进。以下是YOLO模型版本的简要概述:

  • YOLOv2(2016):对原始YOLO进行了改进,如批量归一化,更高分辨率的输入和锚框,以实现更好的检测。
  • YOLOv3(2018):增加了对象性评分和多尺度预测,以提高小对象检测。更好的主干连接也提高了性能。
  • YOLOv4(2020):这是第一个不是由雷德蒙开发的版本。它引入了mish激活,功能聚合和一袋用于数据增强的免费赠品等功能,使YOLO更加强大。
  • YOLOv5(2020):由Ultralytics开发,该版本专注于易用性和开发人员可访问性,增加了更快的培训和更好的设备部署功能。
  • YOLOv 6(2022):重新设计的EfficientRep Backbone和Rep-PAN Neck引入了更多的培训增强功能,提高了资源有限环境的性能。
  • YOLOv 7(2022):引入E-ELAN聚合,通过更高效的计算设计实现更好的内存管理和更快的学习。
  • YOLOv8(2023):Ultralytics开发了完全无锚模型YOLOv8。该版本直接预测对象中心,提高了准确性并提高了处理速度。
  • YOLOv9(2024):引入了可编程梯度信息(PGI)和广义高效层聚合网络(GELAN),从而在检测任务中实现更精确的学习和更高的准确性。
  • YOLOv10(2024):由清华大学开发,该版本具有更少的参数和更低的延迟,使其成为最高效的版本。它的检测速度比以前的型号快1.8倍,同时减少了25%的参数数量。
  • YOLO 11(2024):Ultralytics的最新YOLO模型在多项任务中表现出色,包括检测、分割、姿态估计、跟踪和分类。

在这里插入图片描述

Ultralytics YOLOv8架构

YOLOv8具有灵活性、精确性和速度,使其成为医疗成像目标检测的理想选择,其中准确性和快速检测非常重要。它的结构由三个主要部分组成:主干、颈部和头部。

在这里插入图片描述

主干

主干负责从输入图像中提取特征。在YOLOv8中,主干是CSPDarknet53,它使用跨阶段部分连接来改善层之间的信息流并提高准确性。

颈部

YOLOv 8架构的颈部将主干连接到头部。它的主要功能是聚合来自不同级别的主干的功能。YOLOv8颈部由一个特征金字塔网络(FPN)和一个路径聚合网络(PANet)组成,可以从不同的层获取信息。这确保了它可以检测同一图像中较小和较大对象的细节。

头部

头部是进行预测的地方。它处理颈部的聚合特征,并输出边界框、类概率和对象置信度得分。YOLOv8的头显由于采用了无锚设计,因此与之前的版本有所不同。

  • 无锚点预测: 较早的YOLO版本(如YOLOv3和YOLOv5)使用预定义的锚框,YOLOv8直接预测对象中心。这使得检测过程更快、更高效,因为模型不再需要计算与预定义锚框的偏移。

YOLOv 8是如何工作的?

YOLOv 8通过将图像划分为网格并预测边界框、类概率和对象置信度来处理图像-所有这些都在一次通过中完成。

类别概率

对于每个检测到的对象,YOLOv8计算对象属于特定类别的概率(例如,肿瘤、病变或医疗应用中的异物)。这使得YOLOv8能够自信地对图像中的多种对象类型进行分类,从而提高其在医学成像中的实用性。

边界框

一旦检测到对象,YOLOv8就会预测边界框坐标,确定其在网格中的位置。与之前依赖锚框来估计对象大小和位置的YOLO版本不同,YOLOv8使用无锚方法,直接预测对象在图像中的确切位置。

对象置信度评分

YOLOv8除了对对象进行分类外,还为每个边界框分配置信度得分。这些分数表明模型确定物体存在。这些分数有助于过滤掉低置信度的检测,确保只考虑最准确的预测。

此外,YOLOv8使用IoU(Intersection over Union)来评估预测的边界框与实际对象的匹配程度,并应用非最大值抑制(NMS)通过删除重叠框来减少误报。

YOLOv8模型尺寸

YOLOv8架构引入了五个不同的模型,每个模型都针对不同的计算环境,从高效的YOLOv8n到最先进的YOLOv8x。这些模型建立在以前版本的改进之上,结合了增强的特征提取和更复杂的架构,以实现上级性能。

YOLOv8系列包括以下型号:

  • YOLOv8n: 该模型是YOLOv8系列中最轻量级和最快速的,专为计算资源有限的环境而设计。YOLOv8n通过利用优化的卷积层和减少的参数数量实现了其紧凑的大小,INT 8格式约为2 MB,FP32格式约为3.8 MB。这使其成为边缘部署、物联网设备和移动的应用的理想选择,在这些应用中,能效和速度至关重要。集成ONNX IoT和TensorRT进一步增强了其跨各种平台的部署灵活性。
  • YOLOv8s: YOLOv8系列的基准模型YOLOv8s包含大约900万个参数。该模型在速度和准确性之间取得了平衡,使其适用于CPU和GPU上的推理任务。它引入了增强的空间金字塔池和改进的路径聚合网络(PANet),从而实现了更好的特征融合和更高的检测精度,特别是对于小目标。
  • YOLOv8m: 拥有大约2500万个参数,YOLOv8m定位为一个中间层模型,在计算效率和精度之间提供了最佳权衡。它配备了更广泛的网络架构,包括更深的主干和颈部,这使它能够在各种数据集的更广泛的对象检测任务中表现出色。该模型特别适合于精度至关重要的实时应用,但计算资源仍然是一个问题。
  • YOLOv8l: YOLOv8l拥有约5500万个参数,专为要求更高精度的应用而设计。它采用了一个更复杂的特征提取过程,带有额外的层和一个精细的注意力机制,提高了对高分辨率图像中更小和更复杂物体的检测。该模型非常适合需要细致对象检测的场景,例如医学成像或自动驾驶。
  • YOLOv8x: YOLOv8系列中最大、最强大的模型YOLOv8x包含约9000万个参数。它在同类产品中实现了最高的mAP(平均精度),使其成为精度不可妥协的应用的首选,例如监控系统或详细的工业检查。然而,这种性能伴随着计算需求的增加,需要使用高端GPU进行实时推理。

YOLOv8的主要特点

YOLOv8将重点关注多个功能。以下是YOLOv8的一些关键特性:

  1. 更高的准确性:与前代产品相比,YOLOv8通过采用新技术和优化提高了目标检测的准确性。
  2. 速度提升:YOLOv8在保持高准确性的同时,实现了比其他目标检测模型更快的推理速度。
  3. 多个主干:YOLOv8支持各种主干,如EfficientNet,ResNet和CSPDarknet,使用户能够灵活地选择适合其特定用例的最佳模型。
  4. 自适应训练:YOLOv8使用自适应训练来优化学习率,并在训练过程中平衡损失函数,从而获得更好的模型性能。
  5. 先进的数据增强:YOLOv8采用先进的数据增强技术,如MixUp和CutMix,以提高模型的鲁棒性和泛化能力。
  6. 可定制的架构:YOLOv8的架构是高度可定制的,允许用户轻松修改模型的结构和参数,以满足他们的需求。
  7. 预训练模型:YOLOv 8提供了预训练模型,便于在各种数据集上使用和迁移学习。

使用YOLOv8进行目标检测应用

在这里插入图片描述

YOLOv8在对象检测和图像分类任务中有各种用例。以下是一些示例:

  1. 自动驾驶汽车:YOLOv8可用于自动驾驶汽车中的实时物体检测,以检测和跟踪其他车辆、行人和交通信号。
  2. 监控:YOLOv8可用于监控系统中,以真实的时间检测和跟踪物体和人。
  3. 零售:YOLOv8可用于零售商店,以监控库存水平,检测商店扒手,并跟踪客户行为。
  4. 医学成像:YOLOv8可用于医学成像,检测和分类各种异常和疾病,如癌症,肿瘤和骨折。
  5. 农业:YOLOv8可以监测作物生长,检测作物病害,识别害虫。
  6. 机器人技术:YOLOv8可用于机器人技术,帮助机器人识别环境中的物体并与之交互。

关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【开源】可获取更多学习资源

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值