【2025最新】目标检测中单阶段与两阶段模型名称与发布时间汇总

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于深度学习的行人跌倒检测系统
9.【基于深度学习的PCB板缺陷检测系统10.【基于深度学习的生活垃圾分类目标检测系统
11.【基于深度学习的安全帽目标检测系统12.【基于深度学习的120种犬类检测与识别系统
13.【基于深度学习的路面坑洞检测系统14.【基于深度学习的火焰烟雾检测系统
15.【基于深度学习的钢材表面缺陷检测系统16.【基于深度学习的舰船目标分类检测系统
17.【基于深度学习的西红柿成熟度检测系统18.【基于深度学习的血细胞检测与计数系统
19.【基于深度学习的吸烟/抽烟行为检测系统20.【基于深度学习的水稻害虫检测与识别系统
21.【基于深度学习的高精度车辆行人检测与计数系统22.【基于深度学习的路面标志线检测与识别系统
23.【基于深度学习的智能小麦害虫检测识别系统24.【基于深度学习的智能玉米害虫检测识别系统
25.【基于深度学习的200种鸟类智能检测与识别系统26.【基于深度学习的45种交通标志智能检测与识别系统
27.【基于深度学习的人脸面部表情识别系统28.【基于深度学习的苹果叶片病害智能诊断系统
29.【基于深度学习的智能肺炎诊断系统30.【基于深度学习的葡萄簇目标检测系统
31.【基于深度学习的100种中草药智能识别系统32.【基于深度学习的102种花卉智能识别系统
33.【基于深度学习的100种蝴蝶智能识别系统34.【基于深度学习的水稻叶片病害智能诊断系统
35.【基于与ByteTrack的车辆行人多目标检测与追踪系统36.【基于深度学习的智能草莓病害检测与分割系统
37.【基于深度学习的复杂场景下船舶目标检测系统38.【基于深度学习的农作物幼苗与杂草检测系统
39.【基于深度学习的智能道路裂缝检测与分析系统40.【基于深度学习的葡萄病害智能诊断与防治系统
41.【基于深度学习的遥感地理空间物体检测系统42.【基于深度学习的无人机视角地面物体检测系统
43.【基于深度学习的木薯病害智能诊断与防治系统44.【基于深度学习的野外火焰烟雾检测系统
45.【基于深度学习的脑肿瘤智能检测系统46.【基于深度学习的玉米叶片病害智能诊断与防治系统
47.【基于深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统74.【基于深度学习的水面垃圾智能检测识别系统
75.【基于深度学习的遥感视角船只智能检测系统76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统
79.【基于深度学习的果园苹果检测与计数系统80.【基于深度学习的半导体芯片缺陷检测系统
81.【基于深度学习的糖尿病视网膜病变检测与诊断系统82.【基于深度学习的运动鞋品牌检测与识别系统
83.【基于深度学习的苹果叶片病害检测识别系统84.【基于深度学习的医学X光骨折检测与语音提示系统
85.【基于深度学习的遥感视角农田检测与分割系统86.【基于深度学习的运动品牌LOGO检测与识别系统
87.【基于深度学习的电瓶车进电梯检测与语音提示系统88.【基于深度学习的遥感视角地面房屋建筑检测分割与分析系统
89.【基于深度学习的医学CT图像肺结节智能检测与语音提示系统90.【基于深度学习的舌苔舌象检测识别与诊断系统
91.【基于深度学习的蛀牙智能检测与语音提示系统92.【基于深度学习的皮肤癌智能检测与语音提示系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

引言

本文主要对于目标检测模型中的单阶段(One-Stage)与双阶段模型(Two-Stage)的名称与发布时间进行汇总。

模型汇总

模型类型模型名称发布时间核心特点
单阶段模型YOLOv12016年首款单阶段检测框架,将检测视为回归问题,速度极快但精度有限。
SSD2016年引入多尺度特征图与锚框机制,平衡速度与精度。
RetinaNet2017年提出Focal Loss解决类别不平衡,提升密集目标检测效果。
YOLOv32018年4月采用多尺度预测(FPN结构)和Darknet-53骨干网络,提升小目标检测能力。
YOLOv42020年4月结合CSPDarknet骨干网络与多种优化技巧,提升小目标检测能力。
YOLOv52020年6月Ultralytics团队基于PyTorch重构,优化自动锚框调整和轻量化部署。
YOLOv62022年7月美团团队推出,专注工业应用,引入无锚检测和动态头部设计。
YOLOv72022年7月提出高效层聚合网络(ELAN),在速度和精度上刷新记录。
YOLOv82023年轻量化设计,支持实时检测,在速度和精度间取得新平衡。
YOLOv92024年2月提出可编程梯度信息(PGI)和广义高效层聚合网络(GELAN),解决信息丢失问题。
YOLOv102024年5月清华大学团队推出首个端到端无NMS模型,通过一致性双重分配策略优化推理效率。
YOLOv112024年9月Ultralytics发布,支持检测、分割、姿态估计等多任务,参数效率提升。
SL-YOLO2024年专为无人机图像设计,通过分层扩展路径聚合网络(HEPAN)增强小目标检测。
YOLOv122025年2月首次融合注意力机制(区域注意力、Flash Attention),支持多任务且精度提升显著,开源代码支持。
双阶段模型R-CNN2014年首次将CNN用于目标检测,依赖选择性搜索生成候选区域。
Faster R-CNN2015年引入RPN网络实现端到端训练,大幅提升效率。
Mask R-CNN2017年扩展至实例分割,支持像素级预测。
Cascade Mask R-CNN2020年多级细化检测策略,提升复杂场景下的检测精度。
FPN2017年构建多尺度特征金字塔,改善小目标检测。

单阶段模型说明

  1. YOLO技术演进

    • 早期版本(v1-v3):注重基础架构优化,如锚框、多尺度预测。
    • 中期版本(v4-v7):通过数据增强、轻量化设计和新型网络结构(如CSPNet、ELAN)提升效率。
    • 近期版本(v8-v12):转向端到端设计,减少后处理依赖(如NMS),并引入注意力机制和Transformer技术。
    • YOLO系列持续优化,YOLOv4引入Mosaic数据增强和CSP结构,YOLOv8通过轻量化设计和注意力机制提升实时性。
    • 2024年提出的SL-YOLO针对无人机图像,通过HEPAN跨尺度融合和轻量化模块(C2FDCB),在VisDrone数据集上实现46.9% mAP。
  2. 优势与局限

    • 速度优势:单阶段模型(如YOLOv8)在自动驾驶、无人机监控中广泛用于实时检测。
    • 精度瓶颈:小目标和复杂背景下的漏检问题仍存在,需依赖多尺度融合或注意力机制优化。

双阶段模型说明

  1. 技术演进

    • Mask R-CNN扩展至实例分割,Cascade Mask R-CNN通过多级检测头提升精度。
    • 轻量化改进(如R-FCN)减少计算量,但仍需依赖候选区域生成。
  2. 应用场景

    • 高精度需求领域(如医学影像、遥感检测),Faster R-CNN仍是主流选择

其他进展

  1. Transformer-Based模型

    • DETR(2020)首次实现端到端检测,无需NMS,但收敛速度慢。
    • Deformable DETR(2021)通过稀疏注意力机制优化小目标检测。
  2. 轻量化趋势

    • 单阶段模型(如YOLOv8、SL-YOLO)结合深度可分离卷积和重参化技术,参数减少30%以上。

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值