YOLOv8改进策略【独家融合改进】| AFPN渐进式自适应特征金字塔 + 注意力机制,适用专栏内所有的注意力模块

一、本文介绍

本文利用 AFPN 和 注意力模块 对YOLOv8的网络模型进行优化提升。本文以SimAM注意力模块为例,目的是让网络能够学习到更深层的语义信息,并结合AFPN渐近式融合及自适应空间融合操作,逐步整合不同层级特征,有效避免非相邻层级间因语义差距过大导致的信息丢失或降级问题,进而提高模型整体性能。


专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv8改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值